tags:

views:

1623

answers:

4

As an exercise, and mostly for my own amusement, I'm implementing a backtracking packrat parser. The inspiration for this is i'd like to have a better idea about how hygenic macros would work in an algol-like language (as apposed to the syntax free lisp dialects you normally find them in). Because of this, different passes through the input might see different grammars, so cached parse results are invalid, unless I also store the current version of the grammar along with the cached parse results. (EDIT: a consequence of this use of key-value collections is that they should be immutable, but I don't intend to expose the interface to allow them to be changed, so either mutable or immutable collections are fine)

The problem is that python dicts cannot appear as keys to other dicts. Even using a tuple (as I'd be doing anyways) doesn't help.

>>> cache = {}
>>> rule = {"foo":"bar"}
>>> cache[(rule, "baz")] = "quux"
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'dict'
>>>

I guess it has to be tuples all the way down. Now the python standard library provides approximately what i'd need, collections.namedtuple has a very different syntax, but can be used as a key. continuing from above session:

>>> from collections import namedtuple
>>> Rule = namedtuple("Rule",rule.keys())
>>> cache[(Rule(**rule), "baz")] = "quux"
>>> cache
{(Rule(foo='bar'), 'baz'): 'quux'}

Ok. But I have to make a class for each possible combination of keys in the rule I would want to use, which isn't so bad, because each parse rule knows exactly what parameters it uses, so that class can be defined at the same time as the function that parses the rule. But combining the rules together is much more dynamic. In particular, I'd like a simple way to have rules override other rules, but collections.namedtuple has no analogue to dict.update().

Edit: An additional problem with namedtuples is that they are strictly positional. Two tuples that look like they should be different can in fact be the same:

>>> you = namedtuple("foo",["bar","baz"])
>>> me = namedtuple("foo",["bar","quux"])
>>> you(bar=1,baz=2) == me(bar=1,quux=2)
True
>>> bob = namedtuple("foo",["baz","bar"])
>>> you(bar=1,baz=2) == bob(bar=1,baz=2)
False

tl'dr: How do I get dicts that can be used as keys to other dicts?

Having hacked a bit on the answers, here's the more complete solution I'm using. Note that this does a bit extra work to make the resulting dicts vaguely immutable for practical purposes. Of course it's still quite easy to hack around it by calling dict.__setitem__(instance, key, value) but we're all adults here.

class hashdict(dict):
    """
    hashable dict implementation, suitable for use as a key into
    other dicts.

        >>> h1 = hashdict({"apples": 1, "bananas":2})
        >>> h2 = hashdict({"bananas": 3, "mangoes": 5})
        >>> h1+h2
        hashdict(apples=1, bananas=3, mangoes=5)
        >>> d1 = {}
        >>> d1[h1] = "salad"
        >>> d1[h1]
        'salad'
        >>> d1[h2]
        Traceback (most recent call last):
        ...
        KeyError: hashdict(bananas=3, mangoes=5)

    based on answers from
       http://stackoverflow.com/questions/1151658/python-hashable-dicts

    """
    def __key(self):
        return tuple(sorted(self.items()))
    def __repr__(self):
        return "{0}({1})".format(self.__class__.__name__,
            ", ".join("{0}={1}".format(
                    str(i[0]),repr(i[1])) for i in self.__key()))

    def __hash__(self):
        return hash(self.__key())
    def __setitem__(self, key, value):
        raise TypeError("{0} does not support item assignment"
                         .format(self.__class__.__name__))
    def __delitem__(self, key):
        raise TypeError("{0} does not support item assignment"
                         .format(self.__class__.__name__))
    def clear(self):
        raise TypeError("{0} does not support item assignment"
                         .format(self.__class__.__name__))
    def pop(self, *args, **kwargs):
        raise TypeError("{0} does not support item assignment"
                         .format(self.__class__.__name__))
    def popitem(self, *args, **kwargs):
        raise TypeError("{0} does not support item assignment"
                         .format(self.__class__.__name__))
    def setdefault(self, *args, **kwargs):
        raise TypeError("{0} does not support item assignment"
                         .format(self.__class__.__name__))
    def update(self, *args, **kwargs):
        raise TypeError("{0} does not support item assignment"
                         .format(self.__class__.__name__))
    def __add__(self, right):
        result = hashdict(self)
        dict.update(result, right)
        return result

if __name__ == "__main__":
    import doctest
    doctest.testmod()
+2  A: 

Hashables should be immutable -- not enforcing this but TRUSTING you not to mutate a dict after its first use as a key, the following approach would work:

class hashabledict(dict):
  def __key(self):
    return tuple((k,self[k]) for k in sorted(self))
  def __hash__(self):
    return hash(self.__key())
  def __eq__(self, other):
    return self.__key() == other.__key()

If you DO need to mutate your dicts and STILL want to use them as keys, complexity explodes hundredfolds -- not to say it can't be done, but I'll wait until a VERY specific indication before I get into THAT incredible morass!-)

Alex Martelli
I certainly do not want to mutate the dicts once they have been prepared. That would make the rest of the packrad algorithm fall apart.
TokenMacGuy
Then the subclass I suggested will work -- note how it bypasses the "positional" issue (_before_ you had edited your question to point it out;-) with the `sorted` in __key;-).
Alex Martelli
The position dependent behavior of namedtuple surprised the heck out of me. I had been playing with it, thinking it might still be an easier way to solve the problem, but that pretty much dashed all my hopes (and will require a rollback :( )
TokenMacGuy
+3  A: 

Here is the easy way to make a hashable dictionary. Just remember not to mutate them after embedding in another dictionary for obvious reasons.

class hashabledict(dict):
    def __hash__(self):
        return hash(tuple(sorted(self.items())))
Unknown
This looks promising!
TokenMacGuy
This does not sharply ensure consistency of __eq__ and __hash__ while my earlier answer does through the use of the __key method (in practice either approach should work, though this one might be slowed down by making an unneeded itermediate list -- fixable by s/items/iteritems/ -- assuming Python 2.* as you don't say;-).
Alex Martelli
@Alex, yes you can fix it with iteritems. I copied and pasted this solution from a google link. As for ensuring consistency of __hash__, there should be no problems. Equality is also not a problem. hashabledict(a=5) == hashabledict(a=5) is true.
Unknown
Both solutions seem to be about the same, and this is probably the kernel of how I will solve the problem, so I'm accepting yours since you have a lower rep.
TokenMacGuy
+1  A: 

A reasonably clean, straightforward implementation is

import collections

class FrozenDict(collections.Mapping):
    """Don't forget the docstrings!!"""

    def __init__(self, *args, **kwargs):
        self._d = dict(*args, **kwargs)

    def __iter__(self):
        return iter(self._d)

    def __len__(self):
        return len(self._d)

    def __getitem__(self, key):
        return self._d[key]

    def __hash__(self):
        return hash(tuple(sorted(self._d.iteritems())))
Mike Graham
+1  A: 

You might also want to add these two methods to get the v2 pickling protocol work with hashdict instances. Otherwise cPickle will try to use hashdict._setitem_ resulting in a TypeError. Interestingly, with the other two versions of the protocol your code works just fine.

def __setstate__(self, objstate):
    for k,v in objstate.items():
        dict.__setitem__(self,k,v)
def __reduce__(self):
    return (hashdict, (), dict(self),)
Giovanni