Hi,
Im getting into kernel work for a bit of my summer research. We are looking to make modifications to the TCP, in specific RTT calculations. What I would like to do is replace the resolution of one of the functions in tcp_input.c to a function provided by a dynamically loaded kernel module. I think this would improve the pace at which we can develop and distribute the modification.
The function I'm interested in was declared as static, however I've recompiled the kernel with the function non-static and exported by EXPORT_SYMBOL. This means the function is now accessible to other modules/parts of the kernel. I have verified this by "cat /proc/kallsyms".
Now I'd like to be able to load a module that can rewrite the symbol address from the initial to my dynamically loaded function. Similarly, when the module is to be unloaded, it would restore the original address. Is this a feasible approach? Do you all have suggestions how this might be better implemented?
Thanks!
Same as Overriding functionality with modules in Linux kernel
Edit:
This was my eventual approach.
Given the following function (which I wanted to override, and is not exported):
static void internal_function(void)
{
// do something interesting
return;
}
modify like so:
static void internal_function_original(void)
{
// do something interesting
return;
}
static void (*internal_function)(void) = &internal_function_original;
EXPORT_SYMBOL(internal_function);
This redefines the expected function identifier instead as a function pointer (which can be called in a similar manner) pointing to the original implementation. EXPORT_SYMBOL() makes the address globally accessible, so we can modify it from a module (or other kernel location).
Now you can write a kernel module with the following form:
static void (*original_function_reference)(void);
extern void (*internal_function)(void);
static void new_function_implementation(void)
{
// do something new and interesting
// return
}
int init_module(void)
{
original_function_reference = internal_function;
internal_function = &new_function_implementation;
return 0;
}
void cleanup_module(void)
{
internal_function = original_function_reference;
}
This module replaces the original implementation with a dynamically loaded version. Upon unloading, the original reference (and implementation) is restored. In my specific case, I provided a new estimator for the RTT in TCP. By using a module, I am able to make small tweaks and restart testing, all without having to recompile and reboot the kernel.