views:

168

answers:

4

So I have an interesting problem that's been the fruit of lots of good discussion in my group at work.

We have some scientific software producing SQLlite files, and this software is basically a black box. We don't control its table designs, formats, etc. It's entirely conceivable that this black box's output could change, and our design needs to be able to handle that.

The SQLlite files are entire databases which our user would like to query across. There are two ways (we see) of implementing this, one, to create a single database and a backend in Python that appends tables from each database to the master database, and two, querying across separate databases' tables and unifying the results in Python.

Both methods run into trouble when the black box produces alters its table structures, say for example renaming a column, splitting up a table, etc. We have to take this into account, and we've discussed translation tables that translate queries of columns from one table format to another.

We're interested in ease of implementation, how well the design handles a change in database/table layout, and speed. Also, a last dimension is how well it would work with existing Python web frameworks (Django doesn't support cross-database queries, and neither does SQLAlchemy, so we know we are in for a lot of programming.)

+3  A: 

If you find yourself querying across databases, you should look into consolidating. Cross-database queries are evil.

If your queries are essentially relegated to individual databases, then you may want to stick with multiple databases, as clearly their separation is necessary.

Jason
would you consider multiple schema also as multiple DBs.One of our production DBs uses schemas to enforce "security"
lexu
A: 

It sounds to me as if your problem isn't really about MySQL or SQLlite. It's about the sharing of data, and the contract that needs to exist between the supplier of data and the user of the same data.

To the extent that databases exist so that data can be shared, that contract is fundamental to everything about databases. When databases were first being built, and database theory was first being solidified, in the 1960s and 1970s, the sharing of data was the central purpose in building databases. Today, databases are frequently used where files would have served equally well. Your situation may be a case in point.

In your situation, you have a beggar's contract with your data suppliers. They can change the format of the data, and maybe even the semantics, and all you can do is suck it up and deal wth it. This situation is by no means uncommon.

I don't know the specifics of your situation, so what follows could be way off target.

If it was up to me, I would want to build a database that was as generic, as flexible, and as stable as possible, without losing the essential features of structured and managed data. Maybe, some design like star schema would make sense, but I might adopt a very different design if I were actually in your shoes.

This leaves the problem of extracting the data from the databases you are given, transforming the data into the stable format the central database supports, and loading it into the central database. You are right in guessing that this involves a lot of programming. This process, known as "ETL" in data warehousing texts, is not the simplest of programming challenges.

At least ETL collects all the hard problems in one place. Once you have the data loaded into a database that's built for your needs, and not for the needs of your suppliers, turning the data into valuable information should be relatively easy, at least at the programming or SQL level. There are even OLAP tools that make using the data as simple as a video game. There are challenges at that level, but they aren't the same kind of challenges I'm talking about here.

Read up on data warehousing, and especially data marts. The description may seem daunting to you at first, but it can be scaled down to meet your needs.

Walter Mitty
Generic database models like the entity attribute value model often have a bad performance. So don't make it too generic.
tuinstoel
+1  A: 

You cannot accommodate arbitrary changes in a database's schema without categorizing and anticipating that change in some way. In the very best case with nontrivial changes, you can sometimes simply ignore new data or tables, in the worst case, your interpretation of the data will entirely break down.

I've encountered similar issues where users need data pivoted out of a normalized schema. The schema does NOT change. However, their required output format requires a fixed number of hierarchical levels. Thus, although the database design accommodates all the changes they want to make, their chosen view of that data cannot be maintained in the face of their changes. Thus it is impossible to maintain the output schema in the face of data change (not even schema change). This is not to say that it's not a valid output or input schema, but that there are limits beyond which their chosen schema cannot be used. At this point, they have to revise the output contract, the pivoting program (which CAN anticipate this and generate new columns) can then have a place to put the data in the output schema.

My point being: the semantics and interpretation of new columns and new tables (or removal of columns and tables which existing logic may depend on) is nontrivial unless new columns or tables can be anticipated in some way. However, in these cases, there are usually good database designs which eliminate those strategies in the first place:

For instance, a particular database schema can contain any number of tables, all with the same structure (although there is no theoretical reason they could not be consolidated into a single table). A particular kind of table could have a set of columns all similarly named (although this "array" violates normalization principles and could be normalized into a commonkey/code/value schema).

Even in a data warehouse ETL situation, a new column is going to have to be determined whether it is a fact or a dimensional attribute, and then if it is a dimensional attribute, which dimension table it is best assigned to. This could somewhat be automated for facts (obvious candidates would be scalars like decimal/numeric) by inspecting the metadata for unmapped columns, altering the DW table (yikes) and then loading appropriately. But for dimensions, I would be very leery of automating somethings like this.

So, in summary, I would say that schema changes in a good normalized database design are the least likely to be able to be accommodated because: 1) the database design already anticipates and accommodates a good deal of change and flexibility and 2) schema changes to such a database design are unlikely to be able to be anticipated very easily. Conversely, schema changes in a poorly normalized database design are actually more easy to anticipate as shortcomings in the database design are more visible.

So, my question to you is: How well-designed is the database you are working from?

Cade Roux
+1  A: 

You say that you know that you are in for a lot of programming...

I'm not sure about that. I would go for a quick and dirty solution not a 'generic' solution because generic solutions like the entity attribute value model often have a bad performance. Don't do client side joining (unifying the results) inside your Python code because that is very slow. Use SQL for joining, it is designed for that purpose. Users can also make their own reports with all kind of reporting tools that generate sql statements. You don't have to do everything in your app, just start with solving 80% of the problems, not 100%.

If something breaks because something inside the black box changes you can define views for backward compatibility that keeps your app functioning.

Maybe the scientific software will add a lot of new features and maybe it will change its datamodel because of those new features..? That is possible but then you will have to change your application anyways to take profit from those new features.

tuinstoel