You can use the Schwartzian Transform:
my @sorted = map { $_->[1] }
sort { $a->[0] <=> $b->[0] }
map { [ $lookup{$_->{bug_severity}, $_ ] }
@unsorted;
Explanation:
map { [ $lookup{$_->{bug_severity}, $_ ] } @unsorted;
maps each bug to an array reference whose first element is the numerical bug severity from the lookup table. Using the Schwartzian Transform, you look up the value only once for each bug in @unsorted
.
Then,
sort { $a->[0] <=> $b->[0] }
sorts that array by the first element. Finally,
@sorted = map { $_->[1] }
pulls out the original bugs from the array returned by sort
.
There is really no need for getval
when all it's doing is a hash lookup.
For automatically generating efficient sorters, CPAN module Sort::Maker is excellent:
use strict; use warnings;
use Sort::Maker;
my @bugs = (
{ name => 'bar', bug_severity => 'severe' },
{ name => 'baz', bug_severity => 'noncritical' },
{ name => 'foo', bug_severity => 'critical' },
);
my $sorter = make_sorter('ST',
name => 'severity_sorter',
init_code => 'my %lookup = (
critical => 0,
severe => 1,
noncritical => -1 );',
number => [ code => '$lookup{$_->{bug_severity}}' ],
);
use Data::Dumper;
print Dumper $_ for severity_sorter( @bugs );
Output:
$VAR1 = {
'name' => 'baz',
'bug_severity' => 'noncritical'
};
$VAR1 = {
'name' => 'foo',
'bug_severity' => 'critical'
};
$VAR1 = {
'name' => 'bar',
'bug_severity' => 'severe'
};
Note that the number of lookups that need to be made when using the naive method depends on the number of elements in @unsorted
. We can count them using the simple program:
#!/usr/bin/perl
use strict;
use warnings;
my ($n_elements) = @ARGV;
my @keys = qw(a b c);
my %lookup = map { $keys[$_-1] => $_ } 1 .. @keys;
my @unsorted = map { $keys[rand 3] } 1 .. $n_elements;
my $n_lookups;
my @sorted = sort {
$n_lookups += 2;
$lookup{$a} <=> $lookup{$b}
} @unsorted;
print "It took $n_lookups lookups to sort $n_elements elements\n";
Output:
C:\Temp> tzt 10
It took 38 lookups to sort 10 elements
C:\Temp> tzt 100
It took 978 lookups to sort 100 elements
C:\Temp> tzt 1000
It took 10916 lookups to sort 1000 elements
C:\Temp> tzt 10000
It took 113000 lookups to sort 10000 elements
Therefore, one would need more information to decide whether the naive sort or using the Schwartzian Transform is the appropriate solution.
And here is a simple benchmark which seems to agree with @Ether's argument:
#!/usr/bin/perl
use strict;
use warnings;
use Benchmark qw( cmpthese );
my ($n_elements) = @ARGV;
my @keys = qw(foo bar baz);
my %lookup = map { $keys[$_] => $_ } 0 .. $#keys;
my @unsorted = map { {v => $keys[rand 3]} } 1 .. $n_elements;
cmpthese(-1, {
naive => sub {
my @sorted = sort {
$lookup{$a->{v}} <=> $lookup{$b->{v}}
} @unsorted;
},
schwartzian => sub {
my @sorted = map { $_->[1] }
sort { $a->[0] <=> $b->[0] }
map { [$lookup{$_->{v}}, $_] }
@unsorted;
}
});
Output:
C:\Temp> tzt 10
Rate schwartzian naive
schwartzian 18842/s -- -29%
naive 26357/s 40% --
C:\Temp> tzt 100
Rate naive schwartzian
naive 1365/s -- -11%
schwartzian 1532/s 12% --
C:\Temp> tzt 1000
Rate naive schwartzian
naive 121/s -- -11%
schwartzian 135/s 12% --