the take
and drop
functions may be able to help you here.
drop, take :: Int -> [a] -> [a]
from these we could construct a function to do one step.
takeNdropM :: Int -> Int -> [a] -> ([a], [a])
takeNdropM n m list = (take n list, drop (n+m) list)
and then we can use this to reduce our problem
takeEveryNafterEveryM :: Int -> Int -> [a] -> [a]
takeEveryNafterEveryM n m [] = []
takeEveryNafterEveryM n m list = taken ++ takeEveryNafterEveryM n m rest
where
(taken, rest) = takeNdropM n m list
*Main> takeEveryNafterEveryM 5 3 [1..20]
[1,2,3,4,5,9,10,11,12,13,17,18,19,20]
since this is not a primitive form of recursion, it is harder to express this as a simple fold.
so a new folding function could be defined to fit your needs
splitReduce :: ([a] -> ([a], [a])) -> [a] -> [a]
splitReduce f [] = []
splitReduce f list = left ++ splitReduce f right
where
(left, right) = f list
then the definition of takeEveryNafterEveryM
is simply
takeEveryNafterEveryM2 n m = splitReduce (takeNdropM 5 3)