views:

295

answers:

3

I recently wrote a java program transforming a SVG document to HTML/Canvas: It was easy to translate a path such as

d="M 0 0 L 100 100 z"

to something like

GeneralPath L= new GeneralPath();
L.moveTo(0,0);
L.lineTo(100,100);
L.closePath();

However I don't know how to translate the Elliptical Arc command to Java/GeneralPath. For example, does anyone know how I should translate the following command to Java/GeneralPath ?

d = "M 750 200 a 100 50 135 1 1 250 50"

Thanks for your help.

+2  A: 

There is no direct command in GeneralPath. I use this function,

    public static final void arcTo(GeneralPath path, float rx, float ry, float theta, boolean largeArcFlag, boolean sweepFlag, float x, float y) {
            // Ensure radii are valid
            if (rx == 0 || ry == 0) {
                    path.lineTo(x, y);
                    return;
            }
            // Get the current (x, y) coordinates of the path
            Point2D p2d = path.getCurrentPoint();
            float x0 = (float) p2d.getX();
            float y0 = (float) p2d.getY();
            // Compute the half distance between the current and the final point
            float dx2 = (x0 - x) / 2.0f;
            float dy2 = (y0 - y) / 2.0f;
            // Convert theta from degrees to radians
            theta = (float) Math.toRadians(theta % 360f);

            //
            // Step 1 : Compute (x1, y1)
            //
            float x1 = (float) (Math.cos(theta) * (double) dx2 + Math.sin(theta)
                            * (double) dy2);
            float y1 = (float) (-Math.sin(theta) * (double) dx2 + Math.cos(theta)
                            * (double) dy2);
            // Ensure radii are large enough
            rx = Math.abs(rx);
            ry = Math.abs(ry);
            float Prx = rx * rx;
            float Pry = ry * ry;
            float Px1 = x1 * x1;
            float Py1 = y1 * y1;
            double d = Px1 / Prx + Py1 / Pry;
            if (d > 1) {
                    rx = Math.abs((float) (Math.sqrt(d) * (double) rx));
                    ry = Math.abs((float) (Math.sqrt(d) * (double) ry));
                    Prx = rx * rx;
                    Pry = ry * ry;
            }

            //
            // Step 2 : Compute (cx1, cy1)
            //
            double sign = (largeArcFlag == sweepFlag) ? -1d : 1d;
            float coef = (float) (sign * Math
                            .sqrt(((Prx * Pry) - (Prx * Py1) - (Pry * Px1))
                                            / ((Prx * Py1) + (Pry * Px1))));
            float cx1 = coef * ((rx * y1) / ry);
            float cy1 = coef * -((ry * x1) / rx);

            //
            // Step 3 : Compute (cx, cy) from (cx1, cy1)
            //
            float sx2 = (x0 + x) / 2.0f;
            float sy2 = (y0 + y) / 2.0f;
            float cx = sx2
                            + (float) (Math.cos(theta) * (double) cx1 - Math.sin(theta)
                                            * (double) cy1);
            float cy = sy2
                            + (float) (Math.sin(theta) * (double) cx1 + Math.cos(theta)
                                            * (double) cy1);

            //
            // Step 4 : Compute the angleStart (theta1) and the angleExtent (dtheta)
            //
            float ux = (x1 - cx1) / rx;
            float uy = (y1 - cy1) / ry;
            float vx = (-x1 - cx1) / rx;
            float vy = (-y1 - cy1) / ry;
            float p, n;
            // Compute the angle start
            n = (float) Math.sqrt((ux * ux) + (uy * uy));
            p = ux; // (1 * ux) + (0 * uy)
            sign = (uy < 0) ? -1d : 1d;
            float angleStart = (float) Math.toDegrees(sign * Math.acos(p / n));
            // Compute the angle extent
            n = (float) Math.sqrt((ux * ux + uy * uy) * (vx * vx + vy * vy));
            p = ux * vx + uy * vy;
            sign = (ux * vy - uy * vx < 0) ? -1d : 1d;
            float angleExtent = (float) Math.toDegrees(sign * Math.acos(p / n));
            if (!sweepFlag && angleExtent > 0) {
                    angleExtent -= 360f;
            } else if (sweepFlag && angleExtent < 0) {
                    angleExtent += 360f;
            }
            angleExtent %= 360f;
            angleStart %= 360f;

            Arc2D.Float arc = new Arc2D.Float();
            arc.x = cx - rx;
            arc.y = cy - ry;
            arc.width = rx * 2.0f;
            arc.height = ry * 2.0f;
            arc.start = -angleStart;
            arc.extent = -angleExtent;
            path.append(arc, true);
    }
ZZ Coder
A: 

Hello Pierre,

However I don't know how to translate the Elliptical Arc command to Java/GeneralPath

I have been reviewing a js library which enables support for Cross Browser display which
supports the SVG syntax to the nth degree... http://www.w3.org/Graphics/SVG/

I have a Resources site which contains tools to convert input into Raphael (the JS library I have been reviewing)

Please visit ny site where you should look for Joseps SVG to Raphael tool in particular.

If you encounter any bugs, please let me or that author know.

Regards Charles http://www.irunmywebsite.com/raphael/raphaelsource.html

Chasbeen