Hi there
The approach I took when implementing my GA framework was as follows:
Create the following classes:
Generation
GeneticAlgorithm
GeneticAlgorithmAdapter
GeneticAlgorithmParameters
Population
Individual
Although I didn't implement the strategy pattern for the various operations, I am sure it would be trivial to create various GA operation implementations as parameters on the GeneticAlgorithm instance.
The GeneticAlgorithm class captures the basic algorithm. It really just defines the various steps (population creation, individual randomisation, selection, cross-over, mutation, etc) and manages the populations of individuals as the algorithm runs. I imagine that here you could plug in different operations if you wanted to.
The real magic lies in the adapter. This is what adapts the problem domain (your specific sub classes of the individuals, with all their relevant data) to the genetic algorithm. I use generics a lot here so that the specific types of the population, parameters and individuals are passed into the implementation. This gives me intellisense and strong-type checking for the implementation of the adapter. The adapter basically needs to define how to perform the specific operations for the given individuals (and their genomes). For example, here is the interface for the adapter:
/// <summary>
/// The interface for an adapter that adapts a domain problem so that it can be optimised with a genetic algorithm.
/// It is a strongly typed version of the adapter.
/// </summary>
/// <typeparam name="TGA"></typeparam>
/// <typeparam name="TIndividual"></typeparam>
/// <typeparam name="TPopulation"></typeparam>
public interface IGeneticAlgorithmAdapter<TGA, TIndividual, TGeneration, TPopulation> : IGeneticAlgorithmAdapter
where TGA : IGeneticAlgorithm
where TIndividual : class, IIndividual, new()
where TGeneration : class, IGeneration<TIndividual>, new()
where TPopulation : class, IPopulation<TIndividual, TGeneration>, new()
{
/// <summary>
/// This gets called before the adapter is used for an optimisation.
/// </summary>
/// <param name="pso"></param>
void InitialiseAdapter(TGA ga);
/// <summary>
/// This initialises the individual so that it is ready to be used for the genetic algorithm.
/// It gets randomised in the RandomiseIndividual method.
/// </summary>
/// <param name="ga">The genetic algorithm that is running.</param>
/// <param name="individual">The individual to initialise.</param>
void InitialiseIndividual(TGA ga, TIndividual individual);
/// <summary>
/// This initialises the generation so that it is ready to be used for the genetic algorithm.
/// </summary>
/// <param name="ga">The genetic algorithm that is running.</param>
/// <param name="generation">The generation to initialise.</param>
void InitialiseGeneration(TGA ga, TGeneration generation);
/// <summary>
/// This initialises the population so that it is ready to be used for the genetic algorithm.
/// </summary>
/// <param name="ga">The genetic algorithm that is running.</param>
/// <param name="population">The population to initialise.</param>
void InitialisePopulation(TGA ga, TPopulation population);
void RandomiseIndividual(TGA ga, TIndividual individual);
void BeforeIndividualUpdated(TGA ga, TIndividual individual);
void AfterIndividualUpdated(TGA ga, TIndividual individual);
void BeforeGenerationUpdated(TGA ga, TGeneration generation);
void AfterGenerationUpdated(TGA ga, TGeneration generation);
void BeforePopulationUpdated(TGA ga, TPopulation population);
void AfterPopulationUpdated(TGA ga, TPopulation population);
double CalculateFitness(TGA ga, TIndividual individual);
void CloneIndividualValues(TIndividual from, TIndividual to);
/// <summary>
/// This selects an individual from the population for the given generation.
/// </summary>
/// <param name="ga">The genetic algorithm that is running.</param>
/// <param name="generation">The generation to select the individual from.</param>
/// <returns>The selected individual.</returns>
TIndividual SelectIndividual(TGA ga, TGeneration generation);
/// <summary>
/// This crosses over two parents to create two children.
/// </summary>
/// <param name="ga">The genetic algorithm that is running.</param>
/// <param name="parentsGeneration">The generation that the parent individuals belong to.</param>
/// <param name="childsGeneration">The generation that the child individuals belong to.</param>
/// <param name="parent1">The first parent to cross over.</param>
/// <param name="parent2">The second parent to cross over.</param>
/// <param name="child">The child that must be updated.</param>
void CrossOver(TGA ga, TGeneration parentsGeneration, TIndividual parent1, TIndividual parent2, TGeneration childsGeneration, TIndividual child);
/// <summary>
/// This mutates the given individual.
/// </summary>
/// <param name="ga">The genetic algorithm that is running.</param>
/// <param name="generation">The individuals generation.</param>
/// <param name="individual">The individual to mutate.</param>
void Mutate(TGA ga, TGeneration generation, TIndividual individual);
/// <summary>
/// This gets the size of the next generation to create.
/// Typically, this is the same size as the current generation.
/// </summary>
/// <param name="ga">The genetic algorithm that is running.</param>
/// <param name="currentGeneration">The current generation.</param>
/// <returns>The size of the next generation to create.</returns>
int GetNextGenerationSize(TGA ga, TGeneration currentGeneration);
/// <summary>
/// This gets whether a cross over should be performed when creating a child from this individual.
/// </summary>
/// <param name="ga">The genetic algorithm that is running.</param>
/// <param name="currentGeneration">The current generation.</param>
/// <param name="individual">The individual to determine whether it needs a cross over.</param>
/// <returns>True to perform a cross over. False to allow the individual through to the next generation un-altered.</returns>
bool ShouldPerformCrossOver(TGA ga, TGeneration generation, TIndividual individual);
/// <summary>
/// This gets whether a mutation should be performed when creating a child from this individual.
/// </summary>
/// <param name="ga">The genetic algorithm that is running.</param>
/// <param name="currentGeneration">The current generation.</param>
/// <param name="individual">The individual to determine whether it needs a mutation.</param>
/// <returns>True to perform a mutation. False to allow the individual through to the next generation un-altered.</returns>
bool ShouldPerformMutation(TGA ga, TGeneration generation, TIndividual individual);
}
I have found that this approach works nicely for me because I can easily reuse the GA implementation for different problem domains, just be writing the appropriate adapter. In terms of the different selection, cross-over or mutation implementations, the adapter can call the implementation that it is interested in. What I normally do is comment out different ideas in the adapter while I am investigating an appropriate strategy.
Hope this helps. I can give more guidance where necessary. It's hard to do the design justice like this.