I just want to know what the difference between all the conditional statements in objective-c and which one is faster and lighter.
One piece of advice: stop worrying about which language constructs are microscopically faster or slower than which others, and instead focus on which ones let you express yourself best.
while isn't a conditional it is a loop. The difference being that the body of a while-loop can be executed many times, the body of a conditional will only be executed once or not at all.
The difference between if and switch is that if accepts an arbitrary expression as the condition and switch just takes values to compare against. Basically if you have a construct like if(x==0) {} else if(x==1) {} else if(x==2) ...
, it can be written much more concisely (and effectively) by using switch.
A case statement could be written as
if (a)
{
// Do something
}
else if (b)
{
// Do something else
}
But the case is much more efficient, since it only evaluates the conditional once and then branches.
while
is only useful if you want a condition to be evaluated, and the associated code block executed, multiple times. If you expect a condition to only occur once, then it's equivalent to if
. A more apt comparison is that while
is a more generalized for
.
If and case statements described
While statement described
Since these statements do different things, it is unproductive to debate which is faster.
It's like asking whether a hammer is faster than a screwdriver.
loops and branches are hard to explain briefly, to get the best code out of a construct in any c-style language depends on the processor used and the local context of the code. The main objective is to reduce the breaking of the execution pipeline -- primarily by reducing branch mispredictions.
I suggest you go here for all your optimization needs. The manuals are written for the c-style programmer and relatively easy to understand if you know some assembly. These manuals should explain to you the subtleties in modern processors, the strategies used by top compilers, and the best way to structure code to get the most out of it.
Each condition statement serves a different purpose and you won't use the same one in every situation. Learn which ones are appropriate for which situation and then write your code. If you profile your code and find there's a bottleneck, then you go ahead and address it. Don't worry about optimizing before there's actually a problem.
There are conditional statements and conditional loops. (If Wikipedia is to be trusted, then simply referring to "a conditional" in programming doesn't cover conditional loops. But this is a minor terminology issue.)
Shmoopty said "Since these statements do different things, it is nonsensical to debate which is faster."
Well... it may be time poorly spent, but it's not nonsensical. For instance, let's say you have an if
statement:
if (cond) {
code
}
You can transform that into a loop that executes at most one time:
while (cond) {
code
break;
}
The latter will be slower in pretty much any language (or the same speed, because the optimizer turned it back into the original if
behind the scenes!) Still, there are occasions in computer programming where (due to bizarre circumstances) the convoluted thing runs faster
But those incidents are few and far between. The focus should be on your code--what makes it clearest, and what captures your intent.
The language-agnostic version (mostly, obviously this doesn't count for declarative languages or other weird ones):
When I was taught programming (quite a while ago, I'll freely admit), a language consisted of three ways of executing instructions:
- sequence (doing things in order).
- selection (doing one of many things).
- iteration (doing something zero or more times).
The if
and case
statements are both variants on selection. If
is used to select one of two different options based on a condition (using pseudo-code):
if condition:
do option 1
else:
do option 2
keeping in mind that the else
may not be needed in which case it's effectively else do nothing
. Also remember that option 1 or 2 may also consist of any of the statement types, including more if
statements (called nesting).
Case
is slightly different - it's generally meant for more than two choices like when you want to do different things based on a character:
select ch:
case 'a','e','i','o','u':
print "is a vowel"
case 'y':
print "never quite sure"
default:
print "is a consonant"
Note that you can use case
for two options (or even one) but it's a bit like killing a fly with a thermonuclear warhead.
While
is not a selection variant but an iteration one. It belongs with the likes of for
, repeat
, until
and a host of other possibilities.
As to which is fastest, it doesn't matter in the vast majority of cases. The compiler writers know far more than we mortal folk how to get the last bit of performance out of their code. You either trust them to do their job right or you hand-code it in assembly yourself (I'd prefer the former).
You'll get far more performance by concentrating on the macro view rather than the minor things. That includes selection of appropriate algorithms, profiling, and targeting of hot spots. It does little good to find something that take five minutes each month and get that running in two minutes. Better to get a smaller improvement in something happening every minute.
The language constructs like if
, while
, case
and so on will already be as fast as they can be since they're used heavily and are relative simple. You should be first writing your code for readability and only worrying about performance when it becomes an issue (see YAGNI).
Even if you found that using if/goto
combinations instead of case
allowed you to run a bit faster, the resulting morass of source code would be harder to maintain down the track.
I just remembered the most important thing about conditionals and branching code. Order your code as follows
if(x==1); //80% of the time
else if(x==2); // 10% of the time
else if(x==3); //6% of the time
else break;
You must use an else sequence... and in this case the prediction logic in your CPU will predict correctly for x==1
and avoid the breaking of your pipeline for 80% of all execution.
More information from intel. Particularly:
In order to effectively write your code to take advantage of these rules, when writing if-else or switch statements, check the most common cases first and work progressively down to the least common. Loops do not necessarily require any special ordering of code for static branch prediction, as only the condition of the loop iterator is normally used.
By following this rule you are flat-out giving the CPU hints about how to bias its prediction logic towards your chained conditionals.
Are you asking whether an if structure will execute faster than a switch statement inside of a large loop? If so, I put together a quick test, this code was put into the viewDidLoad method of a new view based project I just created in the latest Xcode and iPhone SDK:
NSLog(@"Begin loop");
NSDate *loopBegin = [NSDate date];
int ctr0, ctr1, ctr2, ctr3, moddedNumber;
ctr0 = 0;
ctr1 = 0;
ctr2 = 0;
ctr3 = 0;
for (int i = 0; i < 10000000; i++) {
moddedNumber = i % 4;
// 3.34, 1.23s in simulator
if (moddedNumber == 0)
{
ctr0++;
}
else if (moddedNumber == 1)
{
ctr1++;
}
else if (moddedNumber == 2)
{
ctr2++;
}
else if (moddedNumber == 3)
{
ctr3++;
}
// 4.11, 1.34s on iPod Touch
/*switch (moddedNumber)
{
case 0:
ctr0++;
break;
case 1:
ctr1++;
break;
case 2:
ctr2++;
break;
case 3:
ctr3++;
break;
}*/
}
NSTimeInterval elapsed = [[NSDate date] timeIntervalSinceDate:loopBegin];
NSLog(@"End loop: %f seconds", elapsed );
This code sample is by no means complete, because as pointed out earlier if you have a situation that comes up more times than the others, you would of course want to put that one up front to reduce the total number of comparisons. It does show that the if structure would execute a bit faster in a situation where the decisions are more or less equally divided among the branches.
Also, keep in mind that the results of this little test varied widely in performance between running it on a device vs. running it in the emulator. The times cited in the code comments are running on an actual device. (The first time shown is the time to run the loop the first time the code was run, and the second number was the time when running the same code again without rebuilding.)