Binary floating point formats are usually broken down into 3 fields: Sign bit, exponent and mantissa. The sign bit is simply set to 1 if the entire number should be negative, and 0 if the number is positive. The exponent is usually an unsigned int with an offset, where 2 to the 0'th power (1) is in the middle of the range. It's simpler in hardware and software to compare sizes this way. The mantissa works similarly to the mantissa in regular scientific notation, with the following caveat: The most significant bit is hidden. This is due to the requirement of normalizing scientific notation to have one significant digit above the decimal point. Remember when your math teacher in elementary school would whack your knuckles with a ruler for writing 35.648 x 10^6 or 0.35648 x 10^8 instead of the correct 3.5648 x 10^7? Since binary only has two states, this required digit above the decimal point is always one, and eliminating it allows another bit of accuracy at the low end of the mantissa.