views:

916

answers:

2

I'm just getting back into C++ after a couple of years of doing a lot of C#, and recently Objective C.

One thing I've done before is to roll my own iterator adapter for std::map that will deref to just the value part, rather than the key-value pair. This is quite a common and natural thing to do. C# provides this facility with its Keys and Values properties of its Dictionary class. Objective-C's NSDictionary, similarly, has allKeys and allValues.

Since I've been "away", Boost has acquired the Range and ForEach libraries, which I am now using extensively. I wondered if between the two there was some facility to do the same, but I haven't been able to find anything.

I'm thinking of knocking something up using Boost's iterator adapters, but before I go down that route I thought I'd ask here if anyone knows of such a facility in Boost, or somewhere else ready made?

+7  A: 

I don't think there's anything out of the box. You can use boost::make_transform.

template<typename T1, typename T2> T2& take_second(const std::pair<T1, T2> &a_pair) 
{
  return a_pair.second;
}

void run_map_value()
{
  map<int,string> a_map;
  a_map[0] = "zero";
  a_map[1] = "one";
  a_map[2] = "two";
  copy( boost::make_transform_iterator(a_map.begin(), take_second<int, string>),
    boost::make_transform_iterator(a_map.end(), take_second<int, string>),
    ostream_iterator<string>(cout, "\n")
    );
}
David Nehme
Thanks David. That's pretty similar to what I have done before. It still requires a lot of boilerplate for my liking. Voting you up for proving a perfectly valid answer though. Still hoping for more...
Phil Nash
Note that it's trivial to wrap `boost::make_transform_iterator( Map::const_iterator , take_second< Key, Value> )` in a function template. That puts the boile
MSalters
+2  A: 

Continuing David's answer, there's another possibility to put the boile by creating a derived class from boost::transform_iterator. I'm using this solution in my projects:

namespace detail
{

template<bool IsConst, bool IsVolatile, typename T>
struct add_cv_if_c
{
    typedef T type;
};
template<typename T>
struct add_cv_if_c<true, false, T>
{
    typedef const T type;
};
template<typename T>
struct add_cv_if_c<false, true, T>
{
    typedef volatile T type;
};
template<typename T>
struct add_cv_if_c<true, true, T>
{
    typedef const volatile T type;
};

template<typename TestConst, typename TestVolatile, typename T>
struct add_cv_if: public add_cv_if_c<TestConst::value, TestVolatile::value, T>
{};

}   // namespace detail


/** An unary function that accesses the member of class T specified in the MemberPtr template parameter.

    The cv-qualification of T is preserved for MemberType
 */
template<typename T, typename MemberType, MemberType T::*MemberPtr>
struct access_member_f
{
    // preserve cv-qualification of T for T::second_type
    typedef typename detail::add_cv_if<
        std::tr1::is_const<T>, 
        std::tr1::is_volatile<T>, 
        MemberType
    >::type& result_type;

    result_type operator ()(T& t) const
    {
        return t.*MemberPtr;
    }
};

/** @short  An iterator adaptor accessing the member called 'second' of the class the 
    iterator is pointing to.
 */
template<typename Iterator>
class accessing_second_iterator: public 
    boost::transform_iterator<
        access_member_f<
            // note: we use the Iterator's reference because this type 
            // is the cv-qualified iterated type (as opposed to value_type).
            // We want to preserve the cv-qualification because the iterator 
            // might be a const_iterator e.g. iterating a const 
            // std::pair<> but std::pair<>::second_type isn't automatically 
            // const just because the pair is const - access_member_f is 
            // preserving the cv-qualification, otherwise compiler errors will 
            // be the result
            typename std::tr1::remove_reference<
                typename std::iterator_traits<Iterator>::reference
            >::type, 
            typename std::iterator_traits<Iterator>::value_type::second_type, 
            &std::iterator_traits<Iterator>::value_type::second
        >, 
        Iterator
    >
{
    typedef boost::transform_iterator<
        access_member_f<
            typename std::tr1::remove_reference<
                typename std::iterator_traits<Iterator>::reference
            >::type, 
            typename std::iterator_traits<Iterator>::value_type::second_type, 
            &std::iterator_traits<Iterator>::value_type::second
        >, 
        Iterator
    > baseclass;

public:
    accessing_second_iterator(): 
        baseclass()
    {}

    // note: allow implicit conversion from Iterator
    accessing_second_iterator(Iterator it): 
        baseclass(it)
    {}
};

This leads to even cleaner code:

void run_map_value()
{
  typedef map<int, string> a_map_t;
  a_map_t a_map;
  a_map[0] = "zero";
  a_map[1] = "one";
  a_map[2] = "two";

  typedef accessing_second_iterator<a_map_t::const_iterator> ia_t;
  // note: specify the iterator adaptor type explicitly as template type, enabling 
  // implicit conversion from begin()/end()
  copy<ia_t>(a_map.begin(), a_map.end(),
    ostream_iterator<string>(cout, "\n")
  );
}
klaus triendl