I think that the confusion may arise from the fact that collections like List<T> implement the interface IEnumerable<T>. If you have a subtype relationship in general (e.g. supertype Shape with two subtypes Rectangle and Circle), you can interpret the relation as an "is-a" hierarchy. 
This means that it is perfectly fine to say that "Circle is a Shape" and similarly, people would say that "List<T> is an IEnumerable<T>" that is, "list is a sequence". This makes some sense, because a list is a special type of a sequence. In general, sequences can be also lazily generated and infinite (and these types cannot also be lists). An example of a (perfectly valid) sequence that cannot be generated by a list would look like this:
// C# version                           // F# version
IEnumerable<int> Numbers() {            let rec loop n = seq {
  int i = 0;                               yield n
  while (true) yield return i++;           yield! loop(n + 1) }
}                                       let numbers = loop(0)
This would be also true for F#, because F# list type also implements IEnumerable<T>, but functional programming doesn't put that strong emphasis on object oriented point of view (and implicit conversions that enable the "is a" interpretation are used less frequently in F#).