A thread that sleeps for X milliseconds is not guaranteed to sleep for precisely that many milliseconds. I am assuming that you have a statement that goes something like:
while(1) {
...
sleep(10); // Sleep for 10 seconds.
// fetch timestamp and send
}
You will get a more accurate gauge of time if you sleep for shorter periods (say 20 milliseconds) in a loop checking until the time has expired. When you sleep for 10 seconds, your thread gets moved further out of the immediate scheduling priority of the underlying OS.
You might also take into account that the time taken to send the timestamps may vary, depending on network conditions, etc, if you do a sleep(10) -> send ->sleep(10) type of loop, the time taken to send will be added onto the next sleep(10) in real terms.
Try something like this (forgive me, my C is a little rusty):
bool expired = false;
double last, current;
double t1, t2;
double difference = 0;
while(1) {
...
last = (double)clock();
while(!expired) {
usleep(200); // sleep for 20 milliseconds
current = (double)clock();
if(((current - last) / (double)CLOCKS_PER_SEC) >= (10.0 - difference))
expired = true;
}
t1 = (double)clock();
// Set and send the timestamp.
t2 = (double)clock();
//
// Calculate how long it took to send the stamps.
// and take that away from the next sleep cycle.
//
difference = (t2 - t1) / (double)CLOCKS_PER_SEC;
expired = false;
}
If you are not bothered about using the standard C library, you could look at using the high resolution timer functionality of windows such as QueryPerformanceFrequency/QueryPerformanceCounter functions.
LONG_INTEGER freq;
LONG_INTEGER t2, t1;
//
// Get the resolution of the timer.
//
QueryPerformanceFrequency(&freq);
// Start Task.
QueryPerformanceCounter(&t1);
... Do something ....
QueryPerformanceCounter(&t2);
// Very accurate duration in seconds.
double duration = (double)(t2.QuadPart - t1.QuadPart) / (double)freq.QuadPart;