What is the difference between printf and cout in C++?
And I quote:
In high level terms, the main differences are type safety (cstdio doesn't have it), performance (most iostreams implementations are slower than the cstdio ones) and extensibility (iostreams allows custom output targets and seamless output of user defined types).
One is a function, that prints to stdout. The other is an object that provides several member functions and overloads of operator<<
that print to stdout. There are many more differences that I could enumeration, but I'm not sure what you are after.
cout<< "Hello";
printf("%s", "Hello");
Both are used to print values. They have completely different syntax. C++ has both, C only has printf.
From the C++ FAQ [http://www.parashift.com/c++-faq-lite/input-output.html#faq-15.1]:
[15.1] Why should I use <iostream>
instead of the traditional <cstdio>
?
Increase type safety, reduce errors, allow extensibility, and provide inheritability.
printf()
is arguably not broken, and scanf()
is perhaps livable despite being error prone, however both are limited with respect to what C++ I/O can do. C++ I/O (using <<
and >>
) is, relative to C (using printf()
and scanf()
):
- More type-safe: With
<iostream>
, the type of object being I/O'd is known statically by the compiler. In contrast,<cstdio>
uses "%" fields to figure out the types dynamically. - Less error prone: With
<iostream>
, there are no redundant "%" tokens that have to be consistent with the actual objects being I/O'd. Removing redundancy removes a class of errors. - Extensible: The C++
<iostream>
mechanism allows new user-defined types to be I/O'd without breaking existing code. Imagine the chaos if everyone was simultaneously adding new incompatible "%" fields toprintf()
andscanf()
?! - Inheritable: The C++
<iostream>
mechanism is built from real classes such asstd::ostream
andstd::istream
. Unlike<cstdio>
'sFILE*
, these are real classes and hence inheritable. This means you can have other user-defined things that look and act like streams, yet that do whatever strange and wonderful things you want. You automatically get to use the zillions of lines of I/O code written by users you don't even know, and they don't need to know about your "extended stream" class.
OTOH, printf is significantly faster [see, for example, http://programming-designs.com/2009/02/c-speed-test-part-2-printf-vs-cout/]
People often claim that printf
is much faster. This is largely a myth. I just tested it, with the following results:
cout with only endl 1461.310252 ms
cout with only '\n' 343.080217 ms
printf with only '\n' 90.295948 ms
cout with string constant and endl 1892.975381 ms
cout with string constant and '\n' 416.123446 ms
printf with string constant and '\n' 472.073070 ms
cout with some stuff and endl 3496.489748 ms
cout with some stuff and '\n' 2638.272046 ms
printf with some stuff and '\n' 2520.318314 ms
Conclusion: if you want only newlines, use printf
; otherwise, cout
is almost as fast, or even faster. More details can be found on my blog.
To be clear, I'm not trying to say that iostream
s are always better than printf
; I'm just trying to say that you should make an informed decision based on real data, not a wild guess based on some common, misleading assumption.
Update: Here's the full code I used for testing. Compiled with g++
without any additional options (apart from -lrt
for the timing).
#include <stdio.h>
#include <iostream>
#include <ctime>
class TimedSection {
char const *d_name;
timespec d_start;
public:
TimedSection(char const *name) :
d_name(name)
{
clock_gettime(CLOCK_REALTIME, &d_start);
}
~TimedSection() {
timespec end;
clock_gettime(CLOCK_REALTIME, &end);
double duration = 1e3 * (end.tv_sec - d_start.tv_sec) +
1e-6 * (end.tv_nsec - d_start.tv_nsec);
std::cerr << d_name << '\t' << std::fixed << duration << " ms\n";
}
};
int main() {
const int iters = 10000000;
char const *text = "01234567890123456789";
{
TimedSection s("cout with only endl");
for (int i = 0; i < iters; ++i)
std::cout << std::endl;
}
{
TimedSection s("cout with only '\\n'");
for (int i = 0; i < iters; ++i)
std::cout << '\n';
}
{
TimedSection s("printf with only '\\n'");
for (int i = 0; i < iters; ++i)
printf("\n");
}
{
TimedSection s("cout with string constant and endl");
for (int i = 0; i < iters; ++i)
std::cout << "01234567890123456789" << std::endl;
}
{
TimedSection s("cout with string constant and '\\n'");
for (int i = 0; i < iters; ++i)
std::cout << "01234567890123456789\n";
}
{
TimedSection s("printf with string constant and '\\n'");
for (int i = 0; i < iters; ++i)
printf("01234567890123456789\n");
}
{
TimedSection s("cout with some stuff and endl");
for (int i = 0; i < iters; ++i)
std::cout << text << "01234567890123456789" << i << std::endl;
}
{
TimedSection s("cout with some stuff and '\\n'");
for (int i = 0; i < iters; ++i)
std::cout << text << "01234567890123456789" << i << '\n';
}
{
TimedSection s("printf with some stuff and '\\n'");
for (int i = 0; i < iters; ++i)
printf("%s01234567890123456789%i\n", text, i);
}
}
For me, the real differences which would make me go for 'cout' rather than 'printf' are:
1) << operator can be overloaded for my classes.
2) Output stream for cout can be easily changed to a file : (: copy paste :)
#include <iostream>
#include <fstream>
using namespace std;
int main ()
{
cout << "This is sent to prompt" << endl;
ofstream file;
file.open ("test.txt");
streambuf* sbuf = cout.rdbuf();
cout.rdbuf(file.rdbuf());
cout << "This is sent to file" << endl;
cout.rdbuf(sbuf);
cout << "This is also sent to prompt" << endl;
return 0;
}
3) I find cout more readable, especially when we have many parameters.
One problem with cout
is the formatting options. Formatting the data (precision, justificaton, etc.) in printf
is easier.
With primitives, it probably doesn't matter entirely which one you use. I say where it gets usefulness is when you want to output complex objects.
For example, if you have a class,
#include <iostream>
#include <cstdlib>
using namespace std;
class Something
{
public:
Something(int x, int y, int z) : a(x), b(y), c(z) { }
int a;
int b;
int c;
friend ostream& operator<<(ostream&, const Something&);
};
ostream& operator<<(ostream& o, const Something& s)
{
o << s.a << ", " << s.b << ", " << s.c;
return o;
}
int main(void)
{
Something s(3, 2, 1);
// output with printf
printf("%i, %i, %i\n", s.a, s.b, s.c);
// output with cout
cout << s << endl;
return 0;
}
Now the above might not seem all that great, but let's suppose you have to output this in multiple places in your code. Not only that, let's say you add a field "int d." With cout, you only have to change it in once place. However, with printf, you'd have to change it in possibly a lot of places and not only that, you have to remind yourself which ones to output.
With that said, with cout, you can reduce a lot of times spent with maintenance of your code and not only that if you re-use the object "Something" in a new application, you don't really have to worry about output.