dan's answer will work and is a correct way to use Parallel.For
, but I went through the trouble of profiling the code and I think you'll find that parallelising this won't make it any faster. Each Parellel.For
makes several new threads, usually more than three, so with 3 nested Parellel.For
s you will have have at least 3^3 (27) threads, which is more way more than the number of logical processors on any machine. The extra threads will if anything add an overhead and slow it down.
So why not just have one Parallel.For
and 2 ordinary for
loops - this will mean that there are around 3-4 threads which will work great on a dual or quad core machine. Like this method:
static void Test2(int[] a)
{
int N = a.Length;
int total = 0;
Object locker = new object();
Parallel.For(0, N, i =>
{
for (int j = i + 1; j < N; ++j)
for (int k = j + 1; k < N; ++k)
if (a[i] + a[j] + a[k] == 30)
lock(locker)
total++;
});
}
Take the following code used to profile both methods:
class Program
{
static void Main(string[] args)
{
Random r = new Random();
int[] arr = new int[100];
arr = arr.Select(i => r.Next(-30, 30)).ToArray();
Profile(Test0, arr, 20);
Profile(Test1, arr, 20);
Profile(Test2, arr, 20);
Console.WriteLine("Test0: {0} ms", Profile(Test0, arr, 100).TotalMilliseconds);
Console.WriteLine("Test1: {0} ms", Profile(Test1, arr, 100).TotalMilliseconds);
Console.WriteLine("Test2: {0} ms", Profile(Test2, arr, 100).TotalMilliseconds);
Console.ReadLine();
}
static void Test0(int[] a)
{
int N = a.Length;
int total = 0;
for (int i = 0; i < N; ++i)
for (int j = i + 1; j < N; ++j)
for (int k = j + 1; k < N; ++k)
if (a[i] + a[j] + a[k] == 30)
total++;
}
static void Test1(int[] a)
{
int N = a.Length;
int total = 0;
Object locker = new object();
Parallel.For(0, N, i => Parallel.For(i+1, N, j => Parallel.For(j+1, N, k =>
{
if (a[i] + a[j] + a[k] == 30)
lock(locker)
total++;
})));
}
static void Test2(int[] a)
{
int N = a.Length;
int total = 0;
Object locker = new object();
Parallel.For(0, N, i =>
{
for (int j = i + 1; j < N; ++j)
for (int k = j + 1; k < N; ++k)
if (a[i] + a[j] + a[k] == 30)
lock(locker)
total++;
});
}
static TimeSpan Profile<T>(Action<T> action, T param, int repeats)
{
Stopwatch s = new Stopwatch();
for (int i = 0; i < repeats; i++)
{
s.Start();
action(param);
s.Stop();
}
return new TimeSpan(s.ElapsedTicks/repeats);
}
}
This yields these results for average execution time for each method: (in Release mode, using .Net 4.0, on a quad core Intel Core i5 machine):
Test0: 0.2544 ms
Test1: 3.3433 ms
Test2: 0.1391 ms