First of all - I checked a lot in this forum and I haven't found something fast enough. I try to make a function that returns me the prime numbers in a specified range. For example I did this function (in C#) using the sieve of Eratosthenes. I tried also Atkin's sieve but the Eratosthenes one runs faster (in my implementation):
public static void SetPrimesSieve(int Range)
    {
        Primes = new List<uint>();
        Primes.Add(2);
        int Half = (Range - 1) >> 1;
        BitArray Nums = new BitArray(Half, false);
        int Sqrt = (int)Math.Sqrt(Range);
        for (int i = 3, j; i <= Sqrt; )
        {
            for (j = ((i * i) >> 1) - 1; j < Half; j += i)
                Nums[j] = true;
            do
                i += 2;
            while (i <= Sqrt && Nums[(i >> 1) - 1]);
        }
        for (int i = 0; i < Half; ++i)
           if (!Nums[i])
                Primes.Add((uint)(i << 1) + 3);
    }
It runs about twice faster than codes & algorithms I found... There's should be a faster way to find prime numbers, could you help me?