Here is an example of my problem
library(RWeka)
iris <- read.arff("iris.arff")
Perform nfolds to obtain the proper accuracy of the classifier.
m<-J48(class~., data=iris)
e<-evaluate_Weka_classifier(m,numFolds = 5)
summary(e)
The results provided here are obtained by building the model with a part of the dataset and testing it with another part, therefore provides accurate precision
Now I Perform AdaBoost to optimize the parameters of the classifier
m2 <- AdaBoostM1(class ~. , data = temp ,control = Weka_control(W = list(J48, M = 30)))
summary(m2)
The results provided here are obtained by using the same dataset for building the model and also the same ones used for evaluating it, therefore the accuracy is not representative of real life precision in which we use other instances to be evaluated by the model. Nevertheless this procedure is helpful for optimizing the model that is built.
The main problem is that I can not optimize the model built, and at the same time test it with data that was not used to build the model, or just use a nfold validation method to obtain the proper accuracy.