Does anyone know how to prescribe boundary conditions of like u[t,0,y]==u[t,1,1-y] in Mathematica using NDSolve... It always complains that the arguments of the dependent variable should literally match the independent variable.
Thanks in advance.
Does anyone know how to prescribe boundary conditions of like u[t,0,y]==u[t,1,1-y] in Mathematica using NDSolve... It always complains that the arguments of the dependent variable should literally match the independent variable.
Thanks in advance.
This symmetry condition can probably be recast in the form Derivative[0,1][u][x,1/2]==0. Of course, more information on the problem would be helpful.
Edit in response to rcollyer: The algebraic identity f(x)=f(1-x) for all x in (0,1) implies a geometric symmetry: the graph of f will be symmetric about the line x=1/2. Now draw the graph of such a function; if it is differentiable, you will find that f'(1/2)=0.
Now, I don't know for sure that the OP's problem can be recast this way; it rather depends on the specifics of the problem. This situation frequently arises when dealing with PDEs on the disk where the function u is a function of polar coordinates r and theta. If the disk represents a clamped drum, then perhaps you've got u(1,t)=0. But, what of u(0,t)? If the function is symmetric and smooth, then u_x(0,t)=0 is a reasonable condition.