What is a "Handle" when discussing resources in Windows? How do they work?
It's an abstract reference value to a resource, often memory or an open file, or a pipe.
Properly, in Windows, (and generally in computing) a handle is an abstraction which hides a real memory address from the API user, allowing the system to reorganize physical memory transparently to the program. Resolving a handle into a pointer locks the memory, and releasing the handle invalidates the pointer. In this case think of it as an index into a table of pointers... you use the index for the system API calls, and the system can change the pointer in the table at will.
Alternatively a real pointer may be given as the handle when the API writer intends that the user of the API be insulated from the specifics of what the address returned points to; in this case it must be considered that what the handle points to may change at any time (from API version to version or even from call to call of the API that returns the handle) - the handle should therefore be treated as simply an opaque value meaningful only to the API.
Think of the window in Windows as being a struct that describes it. This struct is an internal part of Windows and you don't need to know the details of it. Instead, Windows provides a typedef for pointer to struct for that struct. That's the "handle" by which you can get hold on the window.,
A HANDLE in Win32 programming is a token that represents a resource that is managed by the Windows kernel. A handle can be to a window, a file, etc.
Handles are simply a way of identifying a particulate resource that you want to work with using the Win32 APIs.
So for instance, if you want to create a Window, and show it on the screen you could do the following:
// Create the window
HWND hwnd = CreateWindow(...);
if (!hwnd)
return; // hwnd not created
// Show the window.
ShowWindow(hwnd, SW_SHOW);
In the above example HWND means "a handle to a window".
If you are used to an object oriented language you can think of a HANDLE as an instance of a class with no methods who's state is only modifiable by other functions. In this case the ShowWindow function modifies the state of the Window HANDLE.
See Handles and Data Types for more information.
A HANDLE
is a context-specific unique identifier. By context-specific, I mean that a handle obtained from one context cannot necessarily be used in any other aribtrary context that also works on HANDLE
s.
For example, GetModuleHandle
returns a unique identifier to a currently loaded module. The returned handle can be used in other functions that accept module handles. It cannot be given to functions that require other types of handles. For example, you couldn't give a handle returned from GetModuleHandle
to HeapDestroy
and expect it to do something sensible.
The HANDLE
itself is just an integral type. Usually, but not necessarily, it is a pointer to some underlying type or memory location. For example, the HANDLE
returned by GetModuleHandle
is actually a pointer to the base virtual memory address of the module. But there is no rule stating that handles must be pointers. A handle could also just be a simple integer (which could possibly be used by some Win32 API as an index into an array).
HANDLE
s are intentionally opaque representations that provide encapsulation and abstraction from internal Win32 resources. This way, the Win32 APIs could potentially change the underlying type behind a HANDLE, without it impacting user code in any way (at least that's the idea).
Consider these three different internal implementations of a Win32 API that I just made up, and assume that Widget
is a struct
.
Widget * GetWidget (std::string name) { Widget *w; w = findWidget(name); return w; }
void * GetWidget (std::string name) { Widget *w; w = findWidget(name); return reinterpret_cast<void *>(w); }
typedef void * HANDLE; HANDLE GetWidget (std::string name) { Widget *w; w = findWidget(name); return reinterpret_cast<HANDLE>(w); }
The first example exposes the internal details about the API: it allows the user code to know that GetWidget
returns a pointer to a struct Widget
. This has a couple of consequences:
- the user code must have access to the header file that defines the Widget struct
- the user code could potentially modify internal parts of the returned Widget struct
Both of these consequences may be undesirable.
The second example hides this internal detail from the user code, by returning just void *
. The user code doesn't need access to the header that defines the Widget struct.
The third example is exactly the same as the second, but we just call the void *
a HANDLE
instead. Perhaps this discourages user code from trying to figure out exactly what the void *
points to.
Why go through this trouble? Consider this fourth example of a newer version of this same API:
typedef void * HANDLE; HANDLE GetWidget (std::string name) { NewImprovedWidget *w; w = findImprovedWidget(name); return reinterpret_cast<HANDLE>(w); }
Notice that the function's interface is identical to the third example above. This means that user code can continue to use this new version of the API, without any changes, even though the "behind the scenes" implementation has changed to use the NewImprovedWidget
struct instead.
The handles in these example are really just a new, presumably friendlier, name for void *
, which is exactly what a HANDLE
is in the Win32 API (look it up at MSDN). It provides an opaque wall between the user code and the Win32 library's internal representations that increases portability, between versions of Windows, of code that uses the Win32 API.
So at the most basic level a HANDLE of any sort is a pointer to a pointer or
#define HANDLE void **
Now as to why you would want to use it
Lets take a setup:
class Object{
int Value;
}
class LargeObj{
char * val;
LargeObj()
{
val = malloc(2048 * 1000);
}
}
void foo(Object bar){
LargeObj lo = new LargeObj();
bar.Value++;
}
void main()
{
Object obj = new Object();
obj.val = 1;
foo(obj);
printf("%d", obj.val);
}
So because obj was passed by value (make a copy and give that to the function) to foo, the printf will print the original value of 1.
Now if we update foo to:
void foo(Object * bar)
{
LargeObj lo = new LargeObj();
bar->val++;
}
There is a chance that the printf will print the updated value of 2. But there is also the possibility that foo will cause some form of memory corruption or exception.
The reason is this while you are now using a pointer to pass obj to the function you are also allocating 2 Megs of memory, this could cause the OS to move the memory around updating the location of obj. Since you have passed the pointer by value, if obj gets moved then the OS updates the pointer but not the copy in the function and potentially causing problems.
A final update to foo of:
void foo(Object **bar){
LargeObj lo = LargeObj();
Object * b = &bar;
b->val++;
}
This will always print the updated value.
See, when the compiler allocates memory for pointers it marks them as immovable, so any re-shuffling of memory caused by the large object being allocated the value passed to the function will point to the correct address to find out the final location in memory to update.
Any particular types of HANDLEs (hWnd, FILE, etc) are domain specific and point to a certain type of structure to protect against memory corruption.
A handle is a unique identifier for an object managed by Windows. It's like a pointer, but not a pointer in the sence that it's not an address that could be dereferenced by user code to gain access to some data. Instead a handle is to be passed to a set of functions that can perform actions on the object the handle identifies.