I have a linked list, which stores groups of settings for my application:
typedef struct settings {
struct settings* next;
char* name;
char* title;
char* desc;
char* bkfolder;
char* srclist;
char* arcall;
char* incfold;
} settings_row;
settings_row* first_profile = { 0 };
#define SETTINGS_PER_ROW 7
When I load values into this structure, I don't want to have to name all the elements. I would rather treat it like a named array -- the values are loaded in order from a file and placed incrementally into the struct. Then, when I need to use the values, I access them by name.
//putting values incrementally into the struct
void read_settings_file(settings_row* settings){
char* field = settings + sizeof(void*);
int i = 0;
while(read_value_into(field[i]) && i++ < SETTINGS_PER_ROW);
}
//accessing components by name
void settings_info(settings_row* settings){
printf("Settings 'profile': %s\n", settings.title);
printf("Description: %s\n", settings.desc);
printf("Folder to backup to: %s\n", settings.bkfolder);
}
But I wonder, since these are all pointers (and there will only ever be pointers in this struct), will the compiler add padding to any of these values? Are they guaranteed to be in this order, and have nothing between the values? Will my approach work sometimes, but fail intermittently?
edit for clarification
I realize that the compiler can pad any values of a struct--but given the nature of the struct (a struct of pointers) I thought this might not be a problem. Since the most efficient way for a 32 bit processor to address data is in 32 bit chunks, this is how the compiler pads values in a struct (ie. an int, short, int in a struct will add 2 bytes of padding after the short, to make it into a 32 bit chunk, and align the next int to the next 32 bit chunk). But since a 32 bit processor uses 32 bit addresses (and a 64 bit processor uses 64 bit addresses (I think)), would padding be totally unnecessary since all of the values of the struct (addresses, which are efficient by their very nature) are in ideal 32 bit chunks?
I am hoping some memory-representation / compiler-behavior guru can come shed some light on whether a compiler would ever have a reason to pad these values