I created a class that opens a COM port and handles overlapped read and write operations. It contains two independent threads - one that reads and one that writes data. Both of them call OnXXX procedures (eg OnRead or OnWrite) notifying about finished read or write operation.
The following is a short example of the idea how the threads work:
TOnWrite = procedure (Text: string);
TWritingThread = class(TThread)
strict private
FOnWrite: TOnWrite;
FWriteQueue: array of string;
FSerialPort: TAsyncSerialPort;
protected
procedure Execute; override;
public
procedure Enqueue(Text: string);
{...}
end;
TAsyncSerialPort = class
private
FCommPort: THandle;
FWritingThread: TWritingThread;
FLock: TCriticalSection;
{...}
public
procedure Open();
procedure Write(Text: string);
procedure Close();
{...}
end;
var
AsyncSerialPort: TAsyncSerialPort;
implementation
{$R *.dfm}
procedure OnWrite(Text: string);
begin
{...}
if {...} then
AsyncSerialPort.Write('something');
{...}
end;
{ TAsyncSerialPort }
procedure TAsyncSerialPort.Close;
begin
FLock.Enter;
try
FWritingThread.Terminate;
if FWritingThread.Suspended then
FWritingThread.Resume;
FWritingThread.WaitFor;
FreeAndNil(FWritingThread);
CloseHandle(FCommPort);
FCommPort := 0;
finally
FLock.Leave;
end;
end;
procedure TAsyncSerialPort.Open;
begin
FLock.Enter;
try
{open comm port}
{create writing thread}
finally
FLock.Leave;
end;
end;
procedure TAsyncSerialPort.Write(Text: string);
begin
FLock.Enter;
try
{add Text to the FWritingThread's queue}
FWritingThread.Enqueue(Text);
finally
FLock.Leave;
end;
end;
{ TWritingThread }
procedure TWritingThread.Execute;
begin
while not Terminated do
begin
{GetMessage() - wait for a message informing about a new value in the queue}
{pop a value from the queue}
{write the value}
{call OnWrite method}
end;
end;
When you look at the Close() procedure, you will see that it enters the critical section, terminates the writing thread and then waits for it to finish. Because of the fact that the writing thread can enqueue a new value to be written when it calls the OnWrite method, it will try to enter the same critical section when calling the Write() procedure of the TAsyncSerialPort class.
And here we've got a deadlock. The thread that called the Close() method entered the critical section and then waits for the writing thread to be closed, while at the same time that thread waits for the critical section to be freed.
I've been thinking for quite a long time and I didn't manage to find a solution to that problem. The thing is that I would like to be sure that no reading/writing thread is alive when the Close() method is left, which means that I cannot just set the Terminated flag of those threads and leave.
How can I solve the problem? Maybe I should change my approach to handling serial port asynchronously?
Thanks for your advice in advance.
Mariusz.
--------- EDIT ----------
How about such a solution?
procedure TAsyncSerialPort.Close;
var
lThread: TThread;
begin
FLock.Enter;
try
lThread := FWritingThread;
if Assigned(lThread) then
begin
lThread.Terminate;
if lThread.Suspended then
lThread.Resume;
FWritingThread := nil;
end;
if FCommPort <> 0 then
begin
CloseHandle(FCommPort);
FCommPort := 0;
end;
finally
FLock.Leave;
end;
if Assigned(lThread) then
begin
lThread.WaitFor;
lThread.Free;
end;
end;
If my thinking is correct, this should eliminate the deadlock problem. Unfortunately, however, I close the comm port handle before the writing thread is closed. This means that when it calls any method that takes the comm port handle as one of its arguments (eg Write, Read, WaitCommEvent) an exception should be raised in that thread. Can I be sure that if I catch that exception in that thread it will not affect the work of the whole application? This question may sound stupid, but I think some exceptions may cause the OS to close the application that caused it, right? Do I have to worry about that in this case?