The commonly used discrete collision detection would check the triangles of each shape for collision, over successive discrete points in time. While straightforward to compute, it could miss a fast moving object hitting another one, due to the collision happening between discrete points in time tested.
Continuous collision detection would first compute the volumes traced by each triangle over an infinity of time. For a triangle moving at constant speed and without rotation, this volume could look like a triangular prism. CCD would then check for collision between the volumes, and finally trace back if and at what time the triangles actually shared the same space.
When angular velocity is introduced, the volume traced by each triangle no longer looks like a prism. It might look more like the shape of a screw, like a strand of DNA, or some other non-trivial shapes you might get by rotating a triangle around some arbitrary axis while dragging it linearly. Computing the shape of such volume is no easy feat.
One approach might first compute the sphere that contains an entire tetrahedron when it is rotating at the given angular velocity vector, if it was not moving linearly. You can compute a rotation circle for each vertex, and derive the sphere from that. Given a sphere, we can now approximate the extruded CCD volume as a cylinder with the radius of the sphere and progressing along the linear velocity vector. Finding collisions of such cylinders gets us a first approximation for an area to search for collisions in.
A second, complementary approach might attempt to approximate the actual volume traced by each triangle by breaking it down into small, almost-prismatic sub-volumes. It would take the triangle positions at two increments of time, and add surfaces generated by tracing the triangle vertices at those moments. It's an approximation because it connects a straight line rather than an actual curve. For the approximation to avoid gross errors, the duration between each successive moments needs to be short enough such that the triangle only completes a small fraction of a rotation. The duration can be derived from the angular velocity.
The second approach creates many more polygons! You can use the first approach to limit the search volume, and then use the second to get higher precision.
If you're solving this for a game engine, you might find the precision of above sufficient (I would still shudder at the computational cost). If, rather, you're writing a CAD program or working on your thesis, you might find it less than satisfying. In the latter case, you might want to refine the second approach, perhaps by a better geometric description of the volume occupied by a turning, moving triangle -- when limited to a small turn angle.