Instead of iterating over all 2^p combinations, one way you could generate such binary matrices is by performing repeated row- and column-wise operations based on the given constraints you have. As an example, I'll post some code that will generate a matrix based on the three constraints you have listed above:
- A minimum number of zeroes per column
- A minimum sum for each row
- A minimum sequential length of ones per column
Initializations:
First start by initializing a few parameters:
nRows = 10; % Row size of matrix
nColumns = 10; % Column size of matrix
minZeroes = 5; % Constraint 1 (for columns)
minRowSum = 5; % Constraint 2 (for rows)
minLengthOnes = 3; % Constraint 3 (for columns)
Helper functions:
Next, create a couple of functions for generating column vectors that match constraints 1 and 3 from above:
function vector = make_column
vector = [false(minZeroes,1); true(nRows-minZeroes,1)]; % Create vector
[vector,maxLength] = randomize_column(vector); % Randomize order
while maxLength < minLengthOnes, % Loop while constraint 3 is not met
[vector,maxLength] = randomize_column(vector); % Randomize order
end
end
function [vector,maxLength] = randomize_column(vector)
vector = vector(randperm(nRows)); % Randomize order
edges = diff([false; vector; false]); % Find rising and falling edges
maxLength = max(find(edges == -1)-find(edges == 1)); % Find longest
% sequence of ones
end
The function make_column will first create a logical column vector with the minimum number of 0 elements and the remaining elements set to 1 (using the functions TRUE and FALSE). This vector will undergo random reordering of its elements until it contains a sequence of ones greater than or equal to the desired minimum length of ones. This is done using the randomize_column function. The vector is randomly reordered using the RANDPERM function to generate a random index order. The edges where the sequence switches between 0 and 1 are detected using the DIFF function. The indices of the edges are then used to find the length of the longest sequence of ones (using FIND and MAX).
Generate matrix columns:
With the above two functions we can now generate an initial binary matrix that will at least satisfy constraints 1 and 3:
binMat = false(nRows,nColumns); % Initialize matrix
for iColumn = 1:nColumns,
binMat(:,iColumn) = make_column; % Create each column
end
Satisfy the row sum constraint:
Of course, now we have to ensure that constraint 2 is satisfied. We can sum across each row using the SUM function:
rowSum = sum(binMat,2);
If any elements of rowSum are less than the minimum row sum we want, we will have to adjust some column values to compensate. There are a number of different ways you could go about modifying column values. I'll give one example here:
while any(rowSum < minRowSum), % Loop while constraint 2 is not met
[minValue,rowIndex] = min(rowSum); % Find row with lowest sum
zeroIndex = find(~binMat(rowIndex,:)); % Find zeroes in that row
randIndex = round(1+rand.*(numel(zeroIndex)-1));
columnIndex = zeroIndex(randIndex); % Choose a zero at random
column = binMat(:,columnIndex);
while ~column(rowIndex), % Loop until zero changes to one
column = make_column; % Make new column vector
end
binMat(:,columnIndex) = column; % Update binary matrix
rowSum = sum(binMat,2); % Update row sum vector
end
This code will loop until all the row sums are greater than or equal to the minimum sum we want. First, the index of the row with the smallest sum (rowIndex) is found using MIN. Next, the indices of the zeroes in that row are found and one of them is randomly chosen as the index of a column to modify (columnIndex). Using make_column, a new column vector is continuously generated until the 0 in the given row becomes a 1. That column in the binary matrix is then updated and the new row sum is computed.
Summary:
For a relatively small 10-by-10 binary matrix, and the given constraints, the above code usually completes in no more than a few seconds. With more constraints, things will of course get more complicated. Depending on how you choose your constraints, there may be no possible solution (for example, setting minRowSum to 6 will cause the above code to never converge to a solution).
Hopefully this will give you a starting point to begin generating the sorts of matrices you want using vectorized operations.