tags:

views:

1357

answers:

8

I could probably write this myself, but the specific way I'm trying to accomplish it is throwing me off. I'm trying to write a generic extension method similar to the others introduced in .NET 3.5 that will take a nested IEnumerable of IEnumerables (and so on) and flatten it into one IEnumerable. Anyone have any ideas?

Specifically, I'm having trouble with the syntax of the extension method itself so that I can work on a flattening algorithm.

+1  A: 
static class EnumerableExtensions
{
    public static IEnumerable<T> Flatten<T>(this IEnumerable<IEnumerable<T>> sequence)
    {
        foreach(var child in sequence)
            foreach(var item in child)
                yield return item;
    }
}

Maybe like this? Or do you mean that it could potentially be infintly deep?

Torbjörn Gyllebring
the forum gladly keeps eating the signature maybe it will work as a comment. public static IEnumerable<T> Flatten<T>(this IEnumerable<IEnumerable<T>> sequence)
Torbjörn Gyllebring
use < and > for < and >
FlySwat
I just tried lt tags. It didn't work. :\
Derek Park
There you go. It was choking on the code and pre tags (neither of which are necessary).
Derek Park
Note that due to generic invariance, you wouldn't be able to pass, say, a List<List<int>> to that method - a List<List<int>> isn't a List<IEnumerable<int>>. That's why I've got two type parameters in my similar code.Of course, this may well change with C# 4 :)
Jon Skeet
A: 

Basicly, you need to have a master IENumerable that is outside of your recursive function, then in your recursive function (Psuedo-code)

private void flattenList(IEnumerable<T> list)
{
    foreach (T item in list)
    {
        masterList.Add(item);

        if (item.Count > 0)
        {
            this.flattenList(item);
        }
    }
}

Though I'm really not sure what you mean by IEnumerable nested in an IEnumerable...whats within that? How many levels of nesting? Whats the final type? obviously my code isn't correct, but I hope it gets you thinking.

FlySwat
+4  A: 

Hmm... I'm not sure exactly what you want here, but here's a "one level" option:

public static IEnumerable<TElement> Flatten<TElement,TSequence> (this IEnumerable<TSequence> sequences)
    where TSequence : IEnumerable<TElement> 
{
    foreach (TSequence sequence in sequences)
    {
        foreach(TElement element in sequence)
        {
            yield return element;
        }
    }
}

If that's not what you want, could you provide the signature of what you do want? If you don't need a generic form, and you just want to do the kind of thing that LINQ to XML constructors do, that's reasonably simple - although the recursive use of iterator blocks is relatively inefficient. Something like:

static IEnumerable Flatten(params object[] objects)
{
    // Can't easily get varargs behaviour with IEnumerable
    return Flatten((IEnumerable) objects);
}

static IEnumerable Flatten(IEnumerable enumerable)
{
    foreach (object element in enumerable)
    {
        IEnumerable candidate = element as IEnumerable;
        if (candidate != null)
        {
            foreach (object nested in candidate)
            {
                yield return nested;
            }
        }
        else
        {
            yield return element;
        }
    }
}

Note that that will treat a string as a sequence of chars, however - you may want to special-case strings to be individual elements instead of flattening them, depending on your use case.

Does that help?

Jon Skeet
+3  A: 

Isn't that what [SelectMany][1] is for?

enum1.SelectMany(
    a => a.SelectMany(
        b => b.SelectMany(
            c => c.Select(
                d => d.Name
            )
        )
    )
);
Mark Brackett
+6  A: 

Here's an extension that might help. It will traverse all nodes in your hierarchy of objects and pick out the ones that match a criteria. It assumes that each object in your hierarchy has a collection property that holds its child objects.

Here's the extension:

/// Traverses an object hierarchy and return a flattened list of elements
/// based on a predicate.
/// 
/// TSource: The type of object in your collection.</typeparam>
/// source: The collection of your topmost TSource objects.</param>
/// selectorFunction: A predicate for choosing the objects you want.
/// getChildrenFunction: A function that fetches the child collection from an object.
/// returns: A flattened list of objects which meet the criteria in selectorFunction.
public static IEnumerable<TSource> Map<TSource>(
  this IEnumerable<TSource> source,
  Func<TSource, bool> selectorFunction,
  Func<TSource, IEnumerable<TSource>> getChildrenFunction)
{
  // Add what we have to the stack
  var flattenedList = source.Where(selectorFunction);

  // Go through the input enumerable looking for children,
  // and add those if we have them
  foreach (TSource element in source)
  {
    flattenedList = flattenedList.Concat(
      getChildrenFunction(element).Map(selectorFunction,
                                       getChildrenFunction)
    );
  }
  return flattenedList;
}

Examples (Unit Tests):

First we need an object and a nested object hierarchy.

A simple node class

class Node
{
  public int NodeId { get; set; }
  public int LevelId { get; set; }
  public IEnumerable<Node> Children { get; set; }

  public override string ToString()
  {
    return String.Format("Node {0}, Level {1}", this.NodeId, this.LevelId);
  }
}

And a method to get a 3-level deep hierarchy of nodes

private IEnumerable<Node> GetNodes()
{
  // Create a 3-level deep hierarchy of nodes
  Node[] nodes = new Node[]
    {
      new Node 
      { 
        NodeId = 1, 
        LevelId = 1, 
        Children = new Node[]
        {
          new Node { NodeId = 2, LevelId = 2, Children = new Node[] {} },
          new Node
          {
            NodeId = 3,
            LevelId = 2,
            Children = new Node[]
            {
              new Node { NodeId = 4, LevelId = 3, Children = new Node[] {} },
              new Node { NodeId = 5, LevelId = 3, Children = new Node[] {} }
            }
          }
        }
      },
      new Node { NodeId = 6, LevelId = 1, Children = new Node[] {} }
    };
  return nodes;
}

First Test: flatten the hierarchy, no filtering

[Test]
public void Flatten_Nested_Heirachy()
{
  IEnumerable<Node> nodes = GetNodes();
  var flattenedNodes = nodes.Map(
    p => true, 
    (Node n) => { return n.Children; }
  );
  foreach (Node flatNode in flattenedNodes)
  {
    Console.WriteLine(flatNode.ToString());
  }

  // Make sure we only end up with 6 nodes
  Assert.AreEqual(6, flattenedNodes.Count());
}

This will show:

Node 1, Level 1 Node 6, Level 1 Node 2, Level 2 Node 3, Level 2 Node 4, Level 3 Node 5, Level 3

Second Test: Get a list of nodes that have an even-numbered NodeId

[Test]
public void Only_Return_Nodes_With_Even_Numbered_Node_IDs()
{
  IEnumerable<Node> nodes = GetNodes();
  var flattenedNodes = nodes.Map(
    p => (p.NodeId % 2) == 0, 
    (Node n) => { return n.Children; }
  );
  foreach (Node flatNode in flattenedNodes)
  {
    Console.WriteLine(flatNode.ToString());
  }
  // Make sure we only end up with 3 nodes
  Assert.AreEqual(3, flattenedNodes.Count());
}

This will show:

Node 6, Level 1
Node 2, Level 2
Node 4, Level 3
@Marc Thanks for the edit ! @lukevenediger you can use your Map extension with things like the TreeNode collection of a Treeview if you first get the collection into an IEnumerable compatible form like : IEnumerable<TreeNode> theNodes1 = treeView2.Nodes.OfType<TreeNode>();... or ... IEnumerable<TreeNode> theNodes2 = treeView2.Nodes.Cast<TreeNode>().Select(node => node);
BillW
works like a charme.
Oliver
A: 

The SelectMany extension method does this already.

Projects each element of a sequence to an IEnumerable<(Of <(T>)>) and flattens the resulting sequences into one sequence.

leppie
A: 

Here is a modified Jon Skeet's answer to allow more than "one level":

static IEnumerable Flatten(IEnumerable enumerable)
{
    foreach (object element in enumerable)
    {
        IEnumerable candidate = element as IEnumerable;
        if (candidate != null)
        {
            foreach (object nested in Flatten(candidate))
            {
                yield return nested;
            }
        }
        else
        {
            yield return element;
        }
    }
}

disclaimer: I don't know C#.

The same in Python:

#!/usr/bin/env python

def flatten(iterable):
    for item in iterable:
        if hasattr(item, '__iter__'):
            for nested in flatten(item):
                yield nested
        else:
            yield item

if __name__ == '__main__':
    for item in flatten([1,[2, 3, [[4], 5]], 6, [[[7]]], [8]]):
        print(item, end=" ")

It prints:

1 2 3 4 5 6 7 8
J.F. Sebastian
A: 

Since yield is not available in VB and LINQ provides both deferred execution and a concise syntax, you can also use.

<Extension()>
Public Function Flatten(Of T)(ByVal objects As Generic.IEnumerable(Of T), ByVal selector As Func(Of T, Generic.IEnumerable(Of T))) As Generic.IEnumerable(Of T)
    Return objects.Union(objects.SelectMany(selector).Flatten(selector))
End Function
Richard Collette