views:

27

answers:

1

I have a series of systems on a LAN running a synchronized display routine. For example, think of a chorus line. The program they ran is fixed. I have each "client" download the entire routine, and then contact the central "server" at fixed points in the routine for synchronization. The routine itself is mundane with, perhaps, 20 possible instructions.

Each client runs the same routine, but they can be doing completely different things at any one time. One part of the chorus line can be kicking left, another part kicking right, but all in time with each other. Clients can join and drop out at any time, but they're all assigned a part. If no-one is there to run the part, it just doesn't get run.

This is all coded in C# .Net.

The client display is a Windows Forms application. The server accepts TCP connections, and then services them round-robin fashion, keeping a master clock of what's going on. The clients send a signal that says "I've reached sync-point 32" (or 19, or 5, or whatever) and waits for the server to acknowledge and then moves on. Or the server can say "No, you need to start at sync-point 15".

This all works great. There is a minor bit of delay between the first and last clients to hit a sync-point, but it's hardly noticeable. Ran for months.

Then the Specification changed.

Now the clients need to respond to near real-time instructions from the server -- it's no longer a pre-set dance program. The server is going to be sending instructions out and the dance program is made up on the fly. I get the fun job of re-designing the protocol, the servicing loops, and the programming instructions.

My toolkit includes anything in a standard .Net 3.5 toolbox. Installing new software is a pain in the arse, since so many systems (clients) can be involved.

I'm looking for suggestions on keeping the clients synced (some sort of latching system? UDP? Broadcast?), distribution of the "dance program", anything that might make this easier than a traditional Client/Server TCP arrangement.

Keep in mind that there are time/speed limitations going on as well. I could put the dance program in a network database, but I'd have to shove instructions in fairly quickly and there'd be a lot of readers using a rather thick protocol (DBI, SqlClient, etc..) to get a small bit of text. That seems overly complex. And I still need something to keep them all displaying in sync.

Suggestions? Opinions? Wild-ass speculation? Code examples?

PS: Answers may not get marked as "correct" (since this isn't a "correct" answer), but +1 votes for good suggestions for sure.

+1  A: 

I did something similar (quite a while back) with synchronizing a bank of 4 displays, each run by a single system, receiving messages from a central server.

The architecture we finally settled on after a fair amount of testing involved having one "master" machine. In your case, this would be having one of your 20 clients that acts as the master, and have it connect to the server via TCP.

The server then would send the entire series of commands for the series through to that one machine.

That machine then used UDP to broadcast real-time instructions to each of the other machines (the 19 other clients on its LAN) to keep their displays up to date. We used UDP for a couple reasons here - there was lower overhead involved, which helped keep the total resource usage down. Also, since you're updating in real-time, if one or two "frames" was out of sync, it was never noticable, at least not noticeable enough for our purposes (having a human sitting and interacting with the system).

The key point to this working smoothly, though, is having an intelligent communication means between the main server and the "master" machine - you want to keep the bandwidth as low as possible. In a case like yours, I'd probably come up with a single binary blob that had the current instruction set for the 20 machines, in its smallest form. (Maybe something like 20 bytes, or 40 bytes if you need it, etc). The "master" machine would then worry about translating this out to the other 19 machines and itself.

There are some nice things about this - the server has a much easier time transmitting to one machine in the cluster instead of every machine in the cluster. This let us, for example, have one single, centralized server "drive" multiple clusters efficiently, without having ridiculous hardware requirements anywhere. It also keeps the client code very, very simple. It just has to listen for a UDP datagram and do whatever it says - in your case, it sounds like it would have one of 20 commands, so the client becomes very, very simple.

The "master" server is the trickiest. In our implementation, we actually had the same client code on it as the other 19 (as a separate proces) and one "translation" process that took the blob, broke it into 20 pieces, and transmitted them. It was fairly simple to write, and worked very well.

Reed Copsey