The best explanation that I've seen can be seen below, followed by a link to the source:
"... The truth is a bit more complex than that. .NET provides
three methods of getting from point A to point B, as it were.
First, there is the implicit cast. This is the cast that doesn't
require you to do anything more than an assignment:
int i = 5;
double d = i;
These are also called "widening conversions" and .NET allows you to
perform them without any cast operator because you could never lose any
information doing it: the possible range of valid values of a double
encompasses the range of valid values for an int and then some, so
you're never going to do this assignment and then discover to your
horror that the runtime dropped a few digits off your int value. For
reference types, the rule behind an implicit cast is that the cast
could never throw an InvalidCastException: it is clear to the compiler
that the cast is always valid.
You can make new implicit cast operators for your own types (which
means that you can make implicit casts that break all of the rules, if
you're stupid about it). The basic rule of thumb is that an implicit
cast can never include the possibility of losing information in the
transition.
Note that the underlying representation did change in this
conversion: a double is represented completely differently from an int.
The second kind of conversion is an explicit cast. An explicit cast is
required wherever there is the possibility of losing information, or
there is a possibility that the cast might not be valid and thus throw
an InvalidCastException:
double d = 1.5;
int i = (int)d;
Here you are obviously going to lose information: i will be 1 after the
cast, so the 0.5 gets lost. This is also known as a "narrowing"
conversion, and the compiler requires that you include an explicit cast
(int) to indicate that yes, you know that information may be lost, but
you don't care.
Similarly, with reference types the compiler requires explicit casts in
situations in which the cast may not be valid at run time, as a signal
that yes, you know there's a risk, but you know what you're doing.
The third kind of conversion is one that involves such a radical change
in representation that the designers didn't provide even an explicit
cast: they make you call a method in order to do the conversion:
string s = "15";
int i = Convert.ToInt32(s);
Note that there is nothing that absolutely requires a method call here.
Implicit and explicit casts are method calls too (that's how you make
your own). The designers could quite easily have created an explicit
cast operator that converted a string to an int. The requirement that
you call a method is a stylistic choice rather than a fundamental
requirement of the language.
The stylistic reasoning goes something like this: String-to-int is a
complicated conversion with lots of opportunity for things going
horribly wrong:
string s = "The quick brown fox";
int i = Convert.ToInt32(s);
As such, the method call gives you documentation to read, and a broad
hint that this is something more than just a quick cast.
When designing your own types (particularly your own value types), you
may decide to create cast operators and conversion functions. The lines
dividing "implicit cast", "explicit cast", and "conversion function"
territory are a bit blurry, so different people may make different
decisions as to what should be what. Just try to keep in mind
information loss, and potential for exceptions and invalid data, and
that should help you decide."
- Bruce Wood, November 16th 2005
http://bytes.com/forum/post1068532-4.html