With the recent buzz on multicore programming is anyone exploring the possibilities of using MPI ?
No, in my opinion it is unsuitable for most processing you would do on a multicore system. The overhead is too high, the objects you pass around must be deeply cloned, and passing large objects graphs around to then run a very small computation is very inefficient. It is really meant for sharing data between separate processes, most often running in separate memory spaces, and most often running long computations.
A multicore processor is a shared memory machine, so there are much more efficient ways to do parallel processing, that do not involve copying objects and where most of the threads run for a very small time. For example, think of a multithreaded Quicksort. The overhead of allocating memory and copying the data to a thread before it can be partioned will be much slower with MPI and an unlimited number of processors than Quicksort running on a single processor.
As an example, in Java, I would use a BlockingQueue (a shared memory construct), to pass object references between threads, with very little overhead.
Not that it does not have its place, see for example the Google search cluster that uses message passing. But it's probably not the problem you are trying to solve.
MPI has a very large amount of overhead, primarily to handle inter-process communication and heterogeneous systems. I've used it in cases where a small amount of data is being passed around, and where the ratio of computation to data is large. This is not the typical usage scenario for most consumer or business tasks, and in any case, as a previous reply mentioned, on a shared memory architecture like a multicore machine, there are vastly faster ways to handle it, such as memory pointers.
If you had some sort of problem with the properties describe above, and you want to be able to spread the job around to other machines, which must be on the same highspeed network as yourself, then maybe MPI could make sense. I have a hard time imagining such a scenario though.
I personally have taken up Erlang( and i like to so far). The messages based approach seem to fit most of the problem and i think that is going to be one of the key item for multi core programming. I never knew about the overhead of MPI and thanks for pointing it out
I've used MPI extensively on large clusters with multi-core nodes. I'm not sure if it's the right thing for a single multi-core box, but if you anticipate that your code may one day scale larger than a single chip, you might consider implementing it in MPI. Right now, nothing scales larger than MPI. I'm not sure where the posters who mention unacceptable overheads are coming from, but I've tried to give an overview of the relevant tradeoffs below. Read on for more.
MPI is the de-facto standard for large-scale scientific computation and it's in wide use on multicore machines already. It is very fast. Take a look at the most recent Top 500 list. The top machines on that list have, in some cases, hundreds of thousands of processors, with multi-socket dual- and quad-core nodes. Many of these machines have very fast custom networks (Torus, Mesh, Tree, etc) and optimized MPI implementations that are aware of the hardware.
If you want to use MPI with a single-chip multi-core machine, it will work fine. In fact, recent versions of Mac OS X come with OpenMPI pre-installed, and you can download an install OpenMPI pretty painlessly on an ordinary multi-core Linux machine. OpenMPI is in use at Los Alamos on most of their systems. Livermore uses mvapich on their Linux clusters. What you should keep in mind before diving in is that MPI was designed for solving large-scale scientific problems on distributed-memory systems. The multi-core boxes you are dealing with probably have shared memory.
OpenMPI and other implementations use shared memory for local message passing by default, so you don't have to worry about network overhead when you're passing messages to local processes. It's pretty transparent, and I'm not sure where other posters are getting their concerns about high overhead. The caveat is that MPI is not the easiest thing you could use to get parallelism on a single multi-core box. In MPI, all the message passing is explicit. It has been called the "assembly language" of parallel programming for this reason. Explicit communication between processes isn't easy if you're not an experienced HPC person, and there are other paradigms more suited for shared memory (UPC, OpenMP, and nice languages like Erlang to name a few) that you might try first.
My advice is to go with MPI if you anticipate writing a parallel application that may need more than a single machine to solve. You'll be able to test and run fine with a regular multi-core box, and migrating to a cluster will be pretty painless once you get it working there. If you are writing an application that will only ever need a single machine, try something else. There are easier ways to exploit that kind of parallelism.
Finally, if you are feeling really adventurous, try MPI in conjunction with threads, OpenMP, or some other local shared-memory paradigm. You can use MPI for the distributed message passing and something else for on-node parallelism. This is where big machines are going; future machines with hundreds of thousands of processors or more are expected to have MPI implementations that scale to all nodes but not all cores, and HPC people will be forced to build hybrid applications. This isn't for the faint of heart, and there's a lot of work to be done before there's an accepted paradigm in this space.
MPI is not inefficient. You need to break the problem down into chunks and pass the chunks around and reorganize when the result is finished per chunk. No one in the right mind would pass around the whole object via MPI when only a portion of the problem is being worked on per thread. Its not the inefficiency of the interface or design pattern thats the inefficiency of the programmers knowledge of how to break up a problem.
When you use a locking mechanism the overhead on the mutex does not scale well. this is due to the fact that the underlining runqueue does not know when you are going to lock the thread next. You will perform more kernel level thrashing using mutex's than a message passing design pattern.
I would have to agree with tgamblin. You'll probably have to roll your sleeves up and really dig into the code to use MPI, explicitly handling the organization of the message-passing yourself. If this is the sort of thing you like or don't mind doing, I would expect that MPI would work just as well on multicore machines as it would on a distributed cluster.
Speaking from personal experience... I coded up some C code in graduate school to do some large scale modeling of electrophysiologic models on a cluster where each node was itself a multicore machine. Therefore, there were a couple of different parallel methods I thought of to tackle the problem.
1) I could use MPI alone, treating every processor as it's own "node" even though some of them are grouped together on the same machine.
2) I could use MPI to handle data moving between multicore nodes, and then use threading (POSIX threads) within each multicore machine, where processors share memory.
For the specific mathematical problem I was working on, I tested two formulations first on a single multicore machine: one using MPI and one using POSIX threads. As it turned out, the MPI implementation was much more efficient, giving a speed-up of close to 2 for a dual-core machine as opposed to 1.3-1.4 for the threaded implementation. For the MPI code, I was able to organize operations so that processors were rarely idle, staying busy while messages were passed between them and masking much of the delay from transferring data. With the threaded code, I ended up with a lot of mutex bottlenecks that forced threads to often sit and wait while other threads completed their computations. Keeping the computational load balanced between threads didn't seem to help this fact.
This may have been specific to just the models I was working on, and the effectiveness of threading vs. MPI would likely vary greatly for other types of parallel problems. Nevertheless, I would disagree that MPI has an unwieldy overhead.