As a follow-up to my previous question, if I want my smartphone application to detect a certain musical note, and I only need to know whether the incoming sound is that musical note or not, with a certain amount of fuzziness, to allow the note to be off-key by x cents.
Given that, is there a superior method over others for speed and accuracy? That is, by knowing that the note you are looking for is, say, a #C3, how best to tell if that note is present or not? I'm assuming that looking for a single note would be easier than separating out all waveforms, and then looking at the results for the fundamental frequency.
In the responses to my original question, one respondent suggested that autocorrelation might work well if you know that the notes are within a certain range. I wonder if autocorrelation would then work even better, if you only have to check for the presence or absence of a certain note (+/- x cents).
Those methods being:
- Kiss FFT
- FFTW
- Discrete Wavelet Transform
- autocorrelation
- zero crossing analysis
- octave-spaced filters
- DWT
Any thoughts would be appreciated.