Let's try to take an architectural point on the issue. Say you are an architect (everyone wants to be an architect ;) ). You need to deliver the architecture to your team: a selected set of libraries, architectural patterns, and design patterns. As a part of your design, you say: "we will implement caching using the following design pattern:
string key = string.Format("[{0}].MyMethod({1},{2})", this, param1, param2 );
T value;
if ( !cache.TryGetValue( key, out value ) )
{
using ( cache.Lock(key) )
{
if ( cache.TryGetValue( key, out value ) )
{
// Do the real job here and store the value into variable 'value'.
cache.Add( key, value );
}
}
}
This is a correct way to do tracing. Developers are going to implement this pattern thousands of times, so you write a nice Word document telling how you want the pattern to be implemented. Yeah, a Word document. Do you have a better solution? I'm afraid you don't. Classic code generators won't help. Functional programming (delegates)? It works fairly well for some aspects, but not here: you need to pass method parameters to the pattern. So what's left? Describe the pattern in natural language and trust developers will implement them.
What will happen?
First, some junior developer will look at the code and tell "Hm. Two cache lookups. Kinda useless. One is enough." (that's not a joke -- ask the DNN team about this issue). And your patterns cease to be thread-safe.
As an architect, how do you ensure that the pattern is properly applied? Unit testing? Fair enough, but you will hardly detect threading issues this way. Code review? That's maybe the solution.
Now, what is you decide to change the pattern? For instance, you detect a bug in the cache component and decide to use your own? Are you going to edit thousands of methods? It's not just refactoring: what if the new component has different semantics?
What if you decide that a method is not going to be cached any more? How difficult will it be to remove caching code?
The AOP solution (whatever the framework is) has the following advantages over plain code:
- It reduces the number of lines of code.
- It reduces the coupling between components, therefore you don't have to change much things when you decide to change the logging component (just update the aspect), therefore it improves the capacity of your source code to cope with new requirements over time.
- Because there is less code, the probability of bugs is lower for a given set of features, therefore AOP improves the quality of your code.
So if you put it all together:
Aspects reduce both development costs and maintenance costs of software.
I have a 90 min talk on this topic and you can watch it at http://vimeo.com/2116491.
Again, the architectural advantages of AOP are independent of the framework you choose. The differences between frameworks (also discussed in this video) influence principally the extent to which you can apply AOP to your code, which was not the point of this question.