Is there any comprehensive overview somewhere that discusses all the different types of threads and what their relationship is with the OS and the scheduler? I've heard so much contradicting information about whether you want certain types of threads, or whether thread pooling is a performance gain or a performance hit, or that threads are heavy weight so you should use these other kind of threads that don't map directly to real threads but then how is that different from thread pooling .... I'm paralyzed. How does anyone make sense of it? Assuming the use of a language that actually directly interacts with threads (I'm aware of concurrent languages, implicit parallelism, etc. as an alternative to needing to know this stuff but I'm curious about this at the moment)
views:
51answers:
4Is there any comprehensive overview somewhere that discusses all the different types of threads?
Threads are the main building block of a Process in the Windows win32 architecture. You can ignore green threads, fibers, green fibers, pthreads (POSIX). Hyper threads don't exist. It is "hyper threading" which is a CPU architecture thing. You cannot code it. You can ignore it.
This leaves use with threads. Indeed. Only threads. A kernel thread is a thread of the kernel, which lives in the upper 2GB (sometimes upper 1GB) of the virtual memory addess space of a machine. You cannot touch it. So you can ignore it most of the time (unless you are writing kernel mode ring-0 code).
Only user threads are the ones you should be concerned about. They come in two flavors: main thread and auxiliary threads. Each process has at least one main thread, it is created for you when you create a process (CreateProcess
API call). Auxiliary threads can do tasks that take long and otherwise interrupt the user experience. In C#/,NET you can use the BackgroundWorker class to easily create and manage threads.
Threads have several properties. This may have lead to all "kinds" of threads. But worker threads are probably the only ones you should be worried about when you start dealing with threads.
Here is my brief summary, please comment and edit at will:
There are no hyperthreads, unless you're talking about Intel's hyperthreading in which case it's just virtual cores.
"Green" usually means "not OS-level" (scheduled/handled by a VM, which may or may not map those unto multiple OS-level threads or processes)
pthreads are an API (Posix Threads)
Kernel threads vs user threads is an implementation level (user threads are implemented in userland, so the kernel is not aware of them and neither is its scheduler), "threads" alone is generally an alias for "kernel threads"
Fibers are system-level coroutines. They're threads, except cooperatively multitasked rather than preemptively.
Well, like with most things, it's common to not just care unless threading is identified as a bottleneck. That is, just use the threading functionality that your platform provides in the usual manner and don't worry about the details, at least in the beginning.
But since you evidently want to know more: Usually, the operating system has a concept of a thread as a unit of execution, which is what the OS scheduler handles. Now, switching between OS-level threads requires a context switch, which can be expensive and can become a performance bottleneck. So instead of mapping programming-language threads directly to OS threads, some threading implementations do everything in user space, so that there is only one OS-level thread that is responsible for all the user-level threads in the application. This is more efficient both performance- and resource-wise, but it has the problem that if you actually have several physical processors, you cannot use more than one of them with user-level threads. So there's one more strategy of allocating threads: have multiple OS-level threads, the number of which relates to the number of physical processors you have, and have each of these be responsible for several user-level threads. These three strategies are often called 1:1 (user threads map 1-to-1 to OS threads), N:1 (all user threads map to 1 OS thread), and M:N (M user threads map to N OS threads).
Thread pooling is a slightly different thing. The idea behind thread pooling is to separate the execution resources from the actual execution, so that you have a number of threads (your resources) available in the thread pool, and when you need some task to be executed, you just pick one thread from the pool and hand the task over to it. So thread pooling is a way to design a multi-threaded application. Another way to design would be to identify the different tasks that will need to be performed (e.g., reading from a network, drawing the UI to the screen), and create a dedicated thread for these tasks. This is mostly orthogonal to whether the threads are user- or OS-level concepts.
I learned a lot reading these slides.
I came across this after looking at Unicorn.