One important advantage of macro-based implementation is that it is not tied to any concrete parameter type. A function-like macro in C acts, in many respects, as a template function in C++ (templates in C++ were born as "more civilized" macros, BTW). In this particular case the argument of the macro has no concrete type. It might be absolutely anything that is convertible to type unsigned long
. For example, if the user so pleases (and if they are willing to accept the implementation-defined consequences), they can pass pointer types to this macro.
Anyway, I have to admit that this macro is not the best example of type-independent flexibility of macros, but in general that flexibility comes handy quite often. Again, when certain functionality is implemented by a function, it is restricted to specific parameter types. In many cases in order to apply similar operation to different types it is necessary to provide several functions with different types of parameters (and different names, since this is C), while the same can be done by just one function-like macro. For example, macro
#define ABS(x) ((x) >= 0 ? (x) : -(x))
works with all arithmetic types, while function-based implementation has to provide quite a few of them (I'm implying the standard abs
, labs
, llabs
and fabs
). (And yes, I'm aware of the traditionally mentioned dangers of such macro.)
Macros are not perfect, but the popular maxim about "function-like macros being no longer necessary because of inline functions" is just plain nonsense. In order to fully replace function-like macros C is going to need function templates (as in C++) or at least function overloading (as in C++ again). Without that function-like macros are and will remain extremely useful mainstream tool in C.