In C#, how can I calculate the number of business (or weekdays) days between two dates?
Thanks!
In C#, how can I calculate the number of business (or weekdays) days between two dates?
Thanks!
Here is an example in C# that also extends into getting hours as well.
http://www.codeproject.com/KB/datetime/CalculatingBusinessHours.aspx
Define an Extension Method on DateTime like so:
public static class DateTimeExtensions
{
public static bool IsWorkingDay(this DateTime date)
{
return date.DayOfWeek != DayOfWeek.Saturday
&& date.DayOfWeek != DayOfWeek.Sunday;
}
}
Then, use is within a Where clause to filter a broader list of dates:
var allDates = GetDates(); // method which returns a list of dates
// filter dates by working day's
var countOfWorkDays = allDates
.Where(day => day.IsWorkingDay())
.Count() ;
Here is a simple method:
DateTime start = new DateTime(2009, 1, 1);
DateTime end = new DateTime(2009, 1, 25);
DateTime tmp = start;
int count = 0;
while (tmp < end)
{
if (tmp.DayOfWeek != DayOfWeek.Saturday && tmp.DayOfWeek != DayOfWeek.Sunday)
count++;
tmp = tmp.AddDays(1);
}
Note: this will include both the start and end dates in the count value.
Here's some code for that purpose, with swedish holidays but you can adapt what holidays to count. Note that I added a limit you might want to remove, but it was for a web-based system and I didnt want anyone to enter some huge date to hog the process
public static int GetWorkdays(DateTime from ,DateTime to)
{
int limit = 9999;
int counter = 0;
DateTime current = from;
int result = 0;
if (from > to)
{
DateTime temp = from;
from = to;
to = temp;
}
if (from >= to)
{
return 0;
}
while (current <= to && counter < limit)
{
if (IsSwedishWorkday(current))
{
result++;
}
current = current.AddDays(1);
counter++;
}
return result;
}
public static bool IsSwedishWorkday(DateTime date)
{
return (!IsSwedishHoliday(date) && date.DayOfWeek != DayOfWeek.Saturday && date.DayOfWeek != DayOfWeek.Sunday);
}
public static bool IsSwedishHoliday(DateTime date)
{
return (
IsSameDay(GetEpiphanyDay(date.Year), date) ||
IsSameDay(GetMayDay(date.Year), date) ||
IsSameDay(GetSwedishNationalDay(date.Year), date) ||
IsSameDay(GetChristmasDay(date.Year), date) ||
IsSameDay(GetBoxingDay(date.Year), date) ||
IsSameDay(GetGoodFriday(date.Year), date) ||
IsSameDay(GetAscensionDay(date.Year), date) ||
IsSameDay(GetAllSaintsDay(date.Year), date) ||
IsSameDay(GetMidsummersDay(date.Year), date) ||
IsSameDay(GetPentecostDay(date.Year), date) ||
IsSameDay(GetEasterMonday(date.Year), date) ||
IsSameDay(GetNewYearsDay(date.Year), date) ||
IsSameDay(GetEasterDay(date.Year), date)
);
}
// Trettondagen
public static DateTime GetEpiphanyDay(int year)
{
return new DateTime(year, 1, 6);
}
// Första maj
public static DateTime GetMayDay(int year)
{
return new DateTime(year,5,1);
}
// Juldagen
public static DateTime GetSwedishNationalDay(int year)
{
return new DateTime(year, 6, 6);
}
// Juldagen
public static DateTime GetNewYearsDay(int year)
{
return new DateTime(year,1,1);
}
// Juldagen
public static DateTime GetChristmasDay(int year)
{
return new DateTime(year,12,25);
}
// Annandag jul
public static DateTime GetBoxingDay(int year)
{
return new DateTime(year, 12, 26);
}
// Långfredagen
public static DateTime GetGoodFriday(int year)
{
return GetEasterDay(year).AddDays(-3);
}
// Kristi himmelsfärdsdag
public static DateTime GetAscensionDay(int year)
{
return GetEasterDay(year).AddDays(5*7+4);
}
// Midsommar
public static DateTime GetAllSaintsDay(int year)
{
DateTime result = new DateTime(year,10,31);
while (result.DayOfWeek != DayOfWeek.Saturday)
{
result = result.AddDays(1);
}
return result;
}
// Midsommar
public static DateTime GetMidsummersDay(int year)
{
DateTime result = new DateTime(year, 6, 20);
while (result.DayOfWeek != DayOfWeek.Saturday)
{
result = result.AddDays(1);
}
return result;
}
// Pingstdagen
public static DateTime GetPentecostDay(int year)
{
return GetEasterDay(year).AddDays(7 * 7);
}
// Annandag påsk
public static DateTime GetEasterMonday(int year)
{
return GetEasterDay(year).AddDays(1);
}
public static DateTime GetEasterDay(int y)
{
double c;
double n;
double k;
double i;
double j;
double l;
double m;
double d;
c = System.Math.Floor(y / 100.0);
n = y - 19 * System.Math.Floor(y / 19.0);
k = System.Math.Floor((c - 17) / 25.0);
i = c - System.Math.Floor(c / 4) - System.Math.Floor((c - k) / 3) + 19 * n + 15;
i = i - 30 * System.Math.Floor(i / 30);
i = i - System.Math.Floor(i / 28) * (1 - System.Math.Floor(i / 28) * System.Math.Floor(29 / (i + 1)) * System.Math.Floor((21 - n) / 11));
j = y + System.Math.Floor(y / 4.0) + i + 2 - c + System.Math.Floor(c / 4);
j = j - 7 * System.Math.Floor(j / 7);
l = i - j;
m = 3 + System.Math.Floor((l + 40) / 44);// month
d = l + 28 - 31 * System.Math.Floor(m / 4);// day
double days = ((m == 3) ? d : d + 31);
DateTime result = new DateTime(y, 3, 1).AddDays(days-1);
return result;
}
I've had such a task before and I've got the solution. I would avoid enumerating all days in between when it's avoidable, which is the case here. I don't even mention creating a bunch of DateTime instances, as I saw in one of the answers above. This is really waste of processing power. Especially in the real world situation, when you have to examine time intervals of several months. See my code, with comments, below.
/// <summary>
/// Calculates number of business days, taking into account:
/// - weekends (Saturdays and Sundays)
/// - bank holidays in the middle of the week
/// </summary>
/// <param name="firstDay">First day in the time interval</param>
/// <param name="lastDay">Last day in the time interval</param>
/// <param name="bankHolidays">List of bank holidays excluding weekends</param>
/// <returns>Number of business days during the 'span'</returns>
public static int BusinessDaysUntil(this DateTime firstDay, DateTime lastDay, params DateTime[] bankHolidays)
{
firstDay = firstDay.Date;
lastDay = lastDay.Date;
if (firstDay > lastDay)
throw new ArgumentException("Incorrect last day " + lastDay);
TimeSpan span = lastDay - firstDay;
int businessDays = span.Days + 1;
int fullWeekCount = businessDays / 7;
// find out if there are weekends during the time exceedng the full weeks
if (businessDays > fullWeekCount*7)
{
// we are here to find out if there is a 1-day or 2-days weekend
// in the time interval remaining after subtracting the complete weeks
int firstDayOfWeek = (int) firstDay.DayOfWeek;
int lastDayOfWeek = (int) lastDay.DayOfWeek;
if (lastDayOfWeek < firstDayOfWeek)
lastDayOfWeek += 7;
if (firstDayOfWeek <= 6)
{
if (lastDayOfWeek >= 7)// Both Saturday and Sunday are in the remaining time interval
businessDays -= 2;
else if (lastDayOfWeek >= 6)// Only Saturday is in the remaining time interval
businessDays -= 1;
}
else if (firstDayOfWeek <= 7 && lastDayOfWeek >= 7)// Only Sunday is in the remaining time interval
businessDays -= 1;
}
// subtract the weekends during the full weeks in the interval
businessDays -= fullWeekCount + fullWeekCount;
// subtract the number of bank holidays during the time interval
foreach (DateTime bankHoliday in bankHolidays)
{
DateTime bh = bankHoliday.Date;
if (firstDay <= bh && bh <= lastDay)
--businessDays;
}
return businessDays;
}
Ok. I think it's time to post the right answer:
http://alecpojidaev.wordpress.com/2009/10/29/work-days-calculation-with-c/
P.S. Solutions posted above making me sic for some reason.