I wrote the basics of several symbolic math features using the ExpressionVisitor type in .NET 4. It's not perfect, but it looks like the foundation of a viable solution.
Symbolic
is a public static class exposing methods like Expand
, Simplify
, and PartialDerivative
ExpandVisitor
is an internal helper type that expands expressions
SimplifyVisitor
is an internal helper type that simplifies expressions
DerivativeVisitor
is an internal helper type that takes the derivative of an expression
ListPrintVisitor
is an internal helper type that converts an Expression
to a prefix notation with a Lisp syntax
Symbolic
public static class Symbolic
{
public static Expression Expand(Expression expression)
{
return new ExpandVisitor().Visit(expression);
}
public static Expression Simplify(Expression expression)
{
return new SimplifyVisitor().Visit(expression);
}
public static Expression PartialDerivative(Expression expression, ParameterExpression parameter)
{
bool totalDerivative = false;
return new DerivativeVisitor(parameter, totalDerivative).Visit(expression);
}
public static string ToString(Expression expression)
{
ConstantExpression result = (ConstantExpression)new ListPrintVisitor().Visit(expression);
return result.Value.ToString();
}
}
Expanding expressions with ExpandVisitor
internal class ExpandVisitor : ExpressionVisitor
{
protected override Expression VisitBinary(BinaryExpression node)
{
var left = Visit(node.Left);
var right = Visit(node.Right);
if (node.NodeType == ExpressionType.Multiply)
{
Expression[] leftNodes = GetAddedNodes(left).ToArray();
Expression[] rightNodes = GetAddedNodes(right).ToArray();
var result =
leftNodes
.SelectMany(x => rightNodes.Select(y => Expression.Multiply(x, y)))
.Aggregate((sum, term) => Expression.Add(sum, term));
return result;
}
if (node.Left == left && node.Right == right)
return node;
return Expression.MakeBinary(node.NodeType, left, right, node.IsLiftedToNull, node.Method, node.Conversion);
}
/// <summary>
/// Treats the <paramref name="node"/> as the sum (or difference) of one or more child nodes and returns the
/// the individual addends in the sum.
/// </summary>
private static IEnumerable<Expression> GetAddedNodes(Expression node)
{
BinaryExpression binary = node as BinaryExpression;
if (binary != null)
{
switch (binary.NodeType)
{
case ExpressionType.Add:
foreach (var n in GetAddedNodes(binary.Left))
yield return n;
foreach (var n in GetAddedNodes(binary.Right))
yield return n;
yield break;
case ExpressionType.Subtract:
foreach (var n in GetAddedNodes(binary.Left))
yield return n;
foreach (var n in GetAddedNodes(binary.Right))
yield return Expression.Negate(n);
yield break;
default:
break;
}
}
yield return node;
}
}
Taking a derivative with DerivativeVisitor
internal class DerivativeVisitor : ExpressionVisitor
{
private ParameterExpression _parameter;
private bool _totalDerivative;
public DerivativeVisitor(ParameterExpression parameter, bool totalDerivative)
{
if (_totalDerivative)
throw new NotImplementedException();
_parameter = parameter;
_totalDerivative = totalDerivative;
}
protected override Expression VisitBinary(BinaryExpression node)
{
switch (node.NodeType)
{
case ExpressionType.Add:
case ExpressionType.Subtract:
return Expression.MakeBinary(node.NodeType, Visit(node.Left), Visit(node.Right));
case ExpressionType.Multiply:
return Expression.Add(Expression.Multiply(node.Left, Visit(node.Right)), Expression.Multiply(Visit(node.Left), node.Right));
case ExpressionType.Divide:
return Expression.Divide(Expression.Subtract(Expression.Multiply(Visit(node.Left), node.Right), Expression.Multiply(node.Left, Visit(node.Right))), Expression.Power(node.Right, Expression.Constant(2)));
case ExpressionType.Power:
if (node.Right is ConstantExpression)
{
return Expression.Multiply(node.Right, Expression.Multiply(Visit(node.Left), Expression.Subtract(node.Right, Expression.Constant(1))));
}
else if (node.Left is ConstantExpression)
{
return Expression.Multiply(node, MathExpressions.Log(node.Left));
}
else
{
return Expression.Multiply(node, Expression.Add(
Expression.Multiply(Visit(node.Left), Expression.Divide(node.Right, node.Left)),
Expression.Multiply(Visit(node.Right), MathExpressions.Log(node.Left))
));
}
default:
throw new NotImplementedException();
}
}
protected override Expression VisitConstant(ConstantExpression node)
{
return MathExpressions.Zero;
}
protected override Expression VisitInvocation(InvocationExpression node)
{
MemberExpression memberExpression = node.Expression as MemberExpression;
if (memberExpression != null)
{
var member = memberExpression.Member;
if (member.DeclaringType != typeof(Math))
throw new NotImplementedException();
switch (member.Name)
{
case "Log":
return Expression.Divide(Visit(node.Expression), node.Expression);
case "Log10":
return Expression.Divide(Visit(node.Expression), Expression.Multiply(Expression.Constant(Math.Log(10)), node.Expression));
case "Exp":
case "Sin":
case "Cos":
default:
throw new NotImplementedException();
}
}
throw new NotImplementedException();
}
protected override Expression VisitParameter(ParameterExpression node)
{
if (node == _parameter)
return MathExpressions.One;
return MathExpressions.Zero;
}
}
Simplifying expressions with SimplifyVisitor
internal class SimplifyVisitor : ExpressionVisitor
{
protected override Expression VisitBinary(BinaryExpression node)
{
var left = Visit(node.Left);
var right = Visit(node.Right);
ConstantExpression leftConstant = left as ConstantExpression;
ConstantExpression rightConstant = right as ConstantExpression;
if (leftConstant != null && rightConstant != null
&& (leftConstant.Value is double) && (rightConstant.Value is double))
{
double leftValue = (double)leftConstant.Value;
double rightValue = (double)rightConstant.Value;
switch (node.NodeType)
{
case ExpressionType.Add:
return Expression.Constant(leftValue + rightValue);
case ExpressionType.Subtract:
return Expression.Constant(leftValue - rightValue);
case ExpressionType.Multiply:
return Expression.Constant(leftValue * rightValue);
case ExpressionType.Divide:
return Expression.Constant(leftValue / rightValue);
default:
throw new NotImplementedException();
}
}
switch (node.NodeType)
{
case ExpressionType.Add:
if (IsZero(left))
return right;
if (IsZero(right))
return left;
break;
case ExpressionType.Subtract:
if (IsZero(left))
return Expression.Negate(right);
if (IsZero(right))
return left;
break;
case ExpressionType.Multiply:
if (IsZero(left) || IsZero(right))
return MathExpressions.Zero;
if (IsOne(left))
return right;
if (IsOne(right))
return left;
break;
case ExpressionType.Divide:
if (IsZero(right))
throw new DivideByZeroException();
if (IsZero(left))
return MathExpressions.Zero;
if (IsOne(right))
return left;
break;
default:
throw new NotImplementedException();
}
return Expression.MakeBinary(node.NodeType, left, right);
}
protected override Expression VisitUnary(UnaryExpression node)
{
var operand = Visit(node.Operand);
ConstantExpression operandConstant = operand as ConstantExpression;
if (operandConstant != null && (operandConstant.Value is double))
{
double operandValue = (double)operandConstant.Value;
switch (node.NodeType)
{
case ExpressionType.Negate:
if (operandValue == 0.0)
return MathExpressions.Zero;
return Expression.Constant(-operandValue);
default:
throw new NotImplementedException();
}
}
switch (node.NodeType)
{
case ExpressionType.Negate:
if (operand.NodeType == ExpressionType.Negate)
{
return ((UnaryExpression)operand).Operand;
}
break;
default:
throw new NotImplementedException();
}
return Expression.MakeUnary(node.NodeType, operand, node.Type);
}
private static bool IsZero(Expression expression)
{
ConstantExpression constant = expression as ConstantExpression;
if (constant != null)
{
if (constant.Value.Equals(0.0))
return true;
}
return false;
}
private static bool IsOne(Expression expression)
{
ConstantExpression constant = expression as ConstantExpression;
if (constant != null)
{
if (constant.Value.Equals(1.0))
return true;
}
return false;
}
}
Formatting expressions for display with ListPrintVisitor
internal class ListPrintVisitor : ExpressionVisitor
{
protected override Expression VisitBinary(BinaryExpression node)
{
string op = null;
switch (node.NodeType)
{
case ExpressionType.Add:
op = "+";
break;
case ExpressionType.Subtract:
op = "-";
break;
case ExpressionType.Multiply:
op = "*";
break;
case ExpressionType.Divide:
op = "/";
break;
default:
throw new NotImplementedException();
}
var left = Visit(node.Left);
var right = Visit(node.Right);
string result = string.Format("({0} {1} {2})", op, ((ConstantExpression)left).Value, ((ConstantExpression)right).Value);
return Expression.Constant(result);
}
protected override Expression VisitConstant(ConstantExpression node)
{
if (node.Value is string)
return node;
return Expression.Constant(node.Value.ToString());
}
protected override Expression VisitParameter(ParameterExpression node)
{
return Expression.Constant(node.Name);
}
}
Testing the results
[TestMethod]
public void BasicSymbolicTest()
{
ParameterExpression x = Expression.Parameter(typeof(double), "x");
Expression linear = Expression.Add(Expression.Constant(3.0), x);
Assert.AreEqual("(+ 3 x)", Symbolic.ToString(linear));
Expression quadratic = Expression.Multiply(linear, Expression.Add(Expression.Constant(2.0), x));
Assert.AreEqual("(* (+ 3 x) (+ 2 x))", Symbolic.ToString(quadratic));
Expression expanded = Symbolic.Expand(quadratic);
Assert.AreEqual("(+ (+ (+ (* 3 2) (* 3 x)) (* x 2)) (* x x))", Symbolic.ToString(expanded));
Assert.AreEqual("(+ (+ (+ 6 (* 3 x)) (* x 2)) (* x x))", Symbolic.ToString(Symbolic.Simplify(expanded)));
Expression derivative = Symbolic.PartialDerivative(expanded, x);
Assert.AreEqual("(+ (+ (+ (+ (* 3 0) (* 0 2)) (+ (* 3 1) (* 0 x))) (+ (* x 0) (* 1 2))) (+ (* x 1) (* 1 x)))", Symbolic.ToString(derivative));
Expression simplified = Symbolic.Simplify(derivative);
Assert.AreEqual("(+ 5 (+ x x))", Symbolic.ToString(simplified));
}