I run a very high traffic(10m impressions a day)/high revenue generating web site built with .net. The core meta data is stored on a SQL server. My team and I have a unique caching strategy that involves querying the database for new meta data at regular intervals from a middle tier server, serializing the data to files and sending those to the web nodes. The web application uses the data in these files (some are actually serialized objects) to instantiate objects and caches those in memory to use for real time requests.
The advantage of this model is that it:
- Allows the web nodes to cache all data in memory and not incur any IO overhead querying a database.
- If the database ever goes down either unexpectedly or for maintenance windows, the web servers will continue to run and generate revenue. You can even fire up a web server without having to retrieve its initial data from the DB because all the data it needs are in files on its own disks.
- Allows us to be completely horizontally scalable. If throughput suffers, we can just add a web server.
The disadvantages are that this caching and persistense layers adds complexity in the code that queries the database, packages the data and unpackages it on the web server. Any time our domain model requires us to add entities, more of this "plumbing" has to be coded. This architecture has been in place for four years and there are probably better ways to tackle this.
One strategy I have been considering is using replication to replicate our master sql server database to local database instances installed on each web server. The web server application would use normal sql/ORM techniques to instantiate objects. Here, we can still sustain a master database outage and we would not have to code up specialized caching code and could instead use nHibernate to handle the persistence.
This seems like a more elegant solution and would like to see what others think or if anyone else has any alternatives to suggest.