I would say, it's the other way around. First, you design what kind of objects you need to have. For those will create a table.
Part of this phase is designing the keys, that is the combinations of attributes (columns) that uniquely identify the object. You may or may not add an artificial key or surrogate key for convenience or performance reasons. From these keys, you typically elect one canonical key, the primary key, which you try to use consistently to identify objects in that table (you keep the other keys too, they serve to ensure unicity as a business rule, not so much for identificattion purposes.)
Then, you think what relationships exist between the objects. An object that is 'owned' by another object, or an object that refers to another object needs some way to identify its related object. In the corresponding table (child table) you add columns to make a foreign key to point to the primary key of the referenced table.
This takes care of all one to many relationships.
Sometimes, an object can be related multiple times to another object. For example, an order can be used to order multiple products, but a product can appear on multiple orders as well. For those relationships, you design a separate table (intersection table - in this example, order_items). This table will have a unique key created from two foreign keys: one pointing to the one parent (orders), one to the other parent (products). And again, you add the columns to the intersection table that you need to create those foreign keys.
So in short, you first design keys and foreign keys, only then you start adding columns to implement them.