Interface to define partial order relationship:
interface IPartialComparer<T> {
int? Compare(T x, T y);
}
Compare should return -1 if x < y, 0 if x = y, 1 if y < x and null if x and y are not comparable.
Our goal is to return an ordering of the elements in the partial order that respects the enumeration. That is, we seek a sequence e_1, e_2, e_3, ..., e_n of the elements in the partial order such that if i <= j and e_i is comparable to e_j then e_i <= e_j. I'll do this using a depth-first search.
Class that implements topological sort using depth-first search:
class TopologicalSorter {
class DepthFirstSearch<TElement, TKey> {
readonly IEnumerable<TElement> _elements;
readonly Func<TElement, TKey> _selector;
readonly IPartialComparer<TKey> _comparer;
HashSet<TElement> _visited;
Dictionary<TElement, TKey> _keys;
List<TElement> _sorted;
public DepthFirstSearch(
IEnumerable<TElement> elements,
Func<TElement, TKey> selector,
IPartialComparer<TKey> comparer
) {
_elements = elements;
_selector = selector;
_comparer = comparer;
var referenceComparer = new ReferenceEqualityComparer<TElement>();
_visited = new HashSet<TElement>(referenceComparer);
_keys = elements.ToDictionary(
e => e,
e => _selector(e),
referenceComparer
);
_sorted = new List<TElement>();
}
public IEnumerable<TElement> VisitAll() {
foreach (var element in _elements) {
Visit(element);
}
return _sorted;
}
void Visit(TElement element) {
if (!_visited.Contains(element)) {
_visited.Add(element);
var predecessors = _elements.Where(
e => _comparer.Compare(_keys[e], _keys[element]) < 0
);
foreach (var e in predecessors) {
Visit(e);
}
_sorted.Add(element);
}
}
}
public IEnumerable<TElement> ToplogicalSort<TElement, TKey>(
IEnumerable<TElement> elements,
Func<TElement, TKey> selector, IPartialComparer<TKey> comparer
) {
var search = new DepthFirstSearch<TElement, TKey>(
elements,
selector,
comparer
);
return search.VisitAll();
}
}
Helper class needed for marking nodes as visited while doing depth-first search:
class ReferenceEqualityComparer<T> : IEqualityComparer<T> {
public bool Equals(T x, T y) {
return Object.ReferenceEquals(x, y);
}
public int GetHashCode(T obj) {
return obj.GetHashCode();
}
}
I make no claim that this is the best implementation of the algorithm but I believe that it is a correct implementation. Further, I did not return an IOrderedEnumerable as you requested but that is easy to do once we are at this point.
The algorithm works by doing a depth-first search through the elements adding an element e to the linear ordering (represented by _sorted in the algorithm) if we have already added all the predecessors of e have already been added to the ordering. Hence, for each element e, if we haven't already visited it, visit its predecessors and then add e. Thus, this is the core of the algorithm:
public void Visit(TElement element) {
// if we haven't already visited the element
if (!_visited.Contains(element)) {
// mark it as visited
_visited.Add(element);
var predecessors = _elements.Where(
e => _comparer.Compare(_keys[e], _keys[element]) < 0
);
// visit its predecessors
foreach (var e in predecessors) {
Visit(e);
}
// add it to the ordering
// at this point we are certain that
// its predecessors are already in the ordering
_sorted.Add(element);
}
}
As an example, consider the partial-ordering defined on subsets of {1, 2, 3} where X < Y if X is a subset of Y. I implement this as follows:
public class SetComparer : IPartialComparer<HashSet<int>> {
public int? Compare(HashSet<int> x, HashSet<int> y) {
bool xSubsety = x.All(i => y.Contains(i));
bool ySubsetx = y.All(i => x.Contains(i));
if (xSubsety) {
if (ySubsetx) {
return 0;
}
return -1;
}
if (ySubsetx) {
return 1;
}
return null;
}
}
Then with sets defined as the list of subsets of {1, 2, 3}
List<HashSet<int>> sets = new List<HashSet<int>>() {
new HashSet<int>(new List<int>() {}),
new HashSet<int>(new List<int>() { 1, 2, 3 }),
new HashSet<int>(new List<int>() { 2 }),
new HashSet<int>(new List<int>() { 2, 3}),
new HashSet<int>(new List<int>() { 3 }),
new HashSet<int>(new List<int>() { 1, 3 }),
new HashSet<int>(new List<int>() { 1, 2 }),
new HashSet<int>(new List<int>() { 1 })
};
TopologicalSorter s = new TopologicalSorter();
var sorted = s.ToplogicalSort(sets, set => set, new SetComparer());
This results in the ordering:
{}, {2}, {3}, {2, 3}, {1}, {1, 3}, {1, 2}, {1, 2, 3}
which respects the partial order.
That was a lot of fun. Thanks.