You got quite a few good answers. I'll pitch in:
A functor, in the mathematical sense, is a special kind of function on an algebra. It is a minimal function which maps an algebra to another algebra. "Minimality" is expressed by the functor laws.
There are two ways to look at this. For example, lists are functors over some type. That is, given an algebra over a type 'a', you can generate a compatible algebra of lists containing things of type 'a'. (For example: the map that takes an element to a singleton list containing it: f(a) = [a]) Again, the notion of compatibility is expressed by the functor laws.
On the other hand, given a functor f "over" a type a, (that is, f a is the result of applying the functor f to the algebra of type a), and function from g: a -> b, we can compute a new functor F = (fmap g) which maps f a to f b. In short, fmap is the part of F that maps "functor parts" to "functor parts", and g is the part of the function that maps "algebra parts" to "algebra parts". It takes a function, a functor, and once complete, it IS a functor too.
It might seem that different languages are using different notions of functors, but they're not. They're merely using functors over different algebras. OCamls has an algebra of modules, and functors over that algebra let you attach new declarations to a module in a "compatible" way.
A Haskell functor is NOT a type class. It is a data type with a free variable which satisfies the type class. If you're willing to dig into the guts of a datatype (with no free variables), you can reinterpret a data type as a functor over an underlying algebra. For example:
data F = F Int
is isomorphic to the class of Ints. So F, as a value constructor, is a function that maps Int to F Int, an equivalent algebra. It is a functor. On the other hand, you don't get fmap for free here. That's what pattern matching is for.
Functors are good for "attaching" things to elements of algebras, in an algebraically compatible way.