You can compute the CM of a uniformly dense polygon as follows: number the N vertices from 0..N-1, and treat them cyclicly, so that vertex N wraps to vertex 0:
total_area = sum[i=0..N-1]( X(p[i],p[i+1])/2 )
CM = sum[i=0..N-1]( (p[i]+p[i+1])*X(p[i],p[i+1])/6 ) / total_area
where X(p,q)= p.x*q.y - q.x*p.y [basically, a 2D cross product]
If the polygon is convex, the CM will be inside the polygon, so you can reasonably start out by slicing up the area in triangles like a pie, with the CM at the hub. You should be able to weight each vertex of a triangle with a third of its mass, without changing the CM -- however, this would still leave a third of the total mass at the CM of the entire polygon. Nonetheless, scaling the mass transfer by 3/2 should let you split the mass of each triangle between the two "external" vertices. As a result,
area[i] = X( (p[i]-CM), (p[i+1]-CM) ) / 2
(this is the area of the triangle between the CM and vertices i and i+1)
mass[i] = (total_mass/total_area) * (area[i-1] + area[i])/2
Note that this kind of mass transfer is profoundly "unphysical" -- if nothing else, if treated literally, it would screw up the moment of inertia something fierce. However, if you need to distribute the mass among the vertices (like for some kind of cheesy explosion), and you don't want to disrupt the CM in doing so, this should do the trick.
Finally, a couple of warnings:
- if you don't use the actual CM for this, it won't work right
- it is hazardous to use this on concave objects; you risk ending up with negative masses