My best approach so far is:
Every circle containing points must have a left-most point. So it makes a list of all the points to the right of a point that are potentially within the bounds of a circle. It sorts the points by x first, to make the sweep sane.
It then sorts them again, this time by the number of neighbours to the right that they have, so that the point with the most neighbours get examined first.
It then examines each point, and for each point to the right, it computes a circle where this pair of points is on the left perimeter. It then counts the points within such a circle.
Because the points have been sorted by potential, it can early-out once it's considered all the nodes that might potentially lead to a better solution.
import random, math, time
from Tkinter import * # our UI
def sqr(x):
return x*x
class Point:
def __init__(self,x,y):
self.x = float(x)
self.y = float(y)
self.left = 0
self.right = []
def __repr__(self):
return "("+str(self.x)+","+str(self.y)+")"
def distance(self,other):
return math.sqrt(sqr(self.x-other.x)+sqr(self.y-other.y))
def equidist(left,right,dist):
u = (right.x-left.x)
v = (right.y-left.y)
if 0 != u:
r = math.sqrt(sqr(dist)-((sqr(u)+sqr(v))/4.))
theta = math.atan(v/u)
x = left.x+(u/2)-(r*math.sin(theta))
if x < left.x:
x = left.x+(u/2)+(r*math.sin(theta))
y = left.y+(v/2)-(r*math.cos(theta))
else:
y = left.y+(v/2)+(r*math.cos(theta))
else:
theta = math.asin(v/(2*dist))
x = left.x-(dist*math.cos(theta))
y = left.y + (v/2)
return Point(x,y)
class Vis:
def __init__(self):
self.frame = Frame(root)
self.canvas = Canvas(self.frame,bg="white",width=width,height=height)
self.canvas.pack()
self.frame.pack()
self.run()
def run(self):
self.count_calc0 = 0
self.count_calc1 = 0
self.count_calc2 = 0
self.count_calc3 = 0
self.count_calc4 = 0
self.count_calc5 = 0
self.prev_x = 0
self.best = -1
self.best_centre = []
for self.sweep in xrange(0,len(points)):
self.count_calc0 += 1
if len(points[self.sweep].right) <= self.best:
break
self.calc(points[self.sweep])
self.sweep = len(points) # so that draw() stops highlighting it
print "BEST",self.best+1, self.best_centre # count left-most point too
print "counts",self.count_calc0, self.count_calc1,self.count_calc2,self.count_calc3,self.count_calc4,self.count_calc5
self.draw()
def calc(self,p):
for self.right in p.right:
self.count_calc1 += 1
if (self.right.left + len(self.right.right)) < self.best:
# this can never help us
continue
self.count_calc2 += 1
self.centre = equidist(p,self.right,radius)
assert abs(self.centre.distance(p)-self.centre.distance(self.right)) < 1
count = 0
for p2 in p.right:
self.count_calc3 += 1
if self.centre.distance(p2) <= radius:
count += 1
if self.best < count:
self.count_calc4 += 4
self.best = count
self.best_centre = [self.centre]
elif self.best == count:
self.count_calc5 += 5
self.best_centre.append(self.centre)
self.draw()
self.frame.update()
time.sleep(0.1)
def draw(self):
self.canvas.delete(ALL)
# draw best circle
for best in self.best_centre:
self.canvas.create_oval(best.x-radius,best.y-radius,\
best.x+radius+1,best.y+radius+1,fill="red",\
outline="red")
# draw current circle
if self.sweep < len(points):
self.canvas.create_oval(self.centre.x-radius,self.centre.y-radius,\
self.centre.x+radius+1,self.centre.y+radius+1,fill="pink",\
outline="pink")
# draw all the connections
for p in points:
for p2 in p.right:
self.canvas.create_line(p.x,p.y,p2.x,p2.y,fill="lightGray")
# plot visited points
for i in xrange(0,self.sweep):
p = points[i]
self.canvas.create_line(p.x-2,p.y,p.x+3,p.y,fill="blue")
self.canvas.create_line(p.x,p.y-2,p.x,p.y+3,fill="blue")
# plot current point
if self.sweep < len(points):
p = points[self.sweep]
self.canvas.create_line(p.x-2,p.y,p.x+3,p.y,fill="red")
self.canvas.create_line(p.x,p.y-2,p.x,p.y+3,fill="red")
self.canvas.create_line(p.x,p.y,self.right.x,self.right.y,fill="red")
self.canvas.create_line(p.x,p.y,self.centre.x,self.centre.y,fill="cyan")
self.canvas.create_line(self.right.x,self.right.y,self.centre.x,self.centre.y,fill="cyan")
# plot unvisited points
for i in xrange(self.sweep+1,len(points)):
p = points[i]
self.canvas.create_line(p.x-2,p.y,p.x+3,p.y,fill="green")
self.canvas.create_line(p.x,p.y-2,p.x,p.y+3,fill="green")
radius = 60
diameter = radius*2
width = 800
height = 600
points = []
# make some points
for i in xrange(0,100):
points.append(Point(random.randrange(width),random.randrange(height)))
# sort points for find-the-right sweep
points.sort(lambda a, b: int(a.x)-int(b.x))
# work out those points to the right of each point
for i in xrange(0,len(points)):
p = points[i]
for j in xrange(i+1,len(points)):
p2 = points[j]
if p2.x > (p.x+diameter):
break
if (abs(p.y-p2.y) <= diameter) and \
p.distance(p2) < diameter:
p.right.append(p2)
p2.left += 1
# sort points in potential order for sweep, point with most right first
points.sort(lambda a, b: len(b.right)-len(a.right))
# debug
for p in points:
print p, p.left, p.right
# show it
root = Tk()
vis = Vis()
root.mainloop()