Does program flow become difficult to follow more quickly than if a >non-functional language is used?
"Program flow" is probably the wrong concept to analyze a large functional program. Control flow can become baroque because there are higher-order functions, but these are generally easy to understand because there is rarely any shared mutable state to worry about, so you can just think about arguments and results. Certainly my experience is that I find it much easier to follow an aggressively functional program than an aggressively object-oriented program where parts of the implementation are smeared out over many classes. And I find it easier to follow a program written with higher-order functions than with dynamic dispatch. I also observe that my students, who are more representative of programmers as a whole, have difficulties with both inheritance and dynamic dispatch. They do not have comparable difficulties with higher-order functions.
Are there other issues or things to consider when writing a large
software project using a functional language?
The critical thing is a good module system. Here is some commentary.
The most powerful module system I know of the unit system of PLT Scheme designed by Matthew Flatt and Matthias Felleisen. This very powerful system unfortunately lacks static types, which I find a great aid to programming.
The next most powerful system is the Standard ML module system. Unfortunately Standard ML, while very expressive, also permits a great many questionable constructs, so it is easy for an amateur to make a real mess. Also, many programmers find it difficult to use Standard ML modules effectively.
The Objective Caml module system is very similar, but there are some differences which tend to mitigate the worst excesses of Standard ML. The languages are actually very similar, but the styles and idioms of Objective Caml make it significantly less likely that beginners will write insane programs.
The least powerful/expressive module system for a functional langauge is the Haskell module system. This system has a grave defect that there are no explicit interfaces, so most of the cognitive benefit of having modules is lost. Another sad outcome is that while the Haskell module system gives users a hierarchical name space, use of this name space (import qualified
, in case you're an insider) is often deprecated, and many Haskell programmers write code as if everything were in one big, flat namespace. This practice amounts to abandoning another of the big benefits of modules.
If I had to write a big system in a functional language and had to be sure that other people understood it, I'd probably pick Standard ML, and I'd establish very stringent programming conventions for use of the module system. (E.g., explicit signatures everywhere, opague ascription with :>
, and no use of open
anywhere, ever.) For me the simplicity of the Standard ML core language (as compared with OCaml) and the more functional nature of the Standard ML Basis Library (as compared with OCaml) are more valuable than the superior aspects of the OCaml module system.
I've worked on just one really big Haskell program, and while I found (and continue to find) working in Haskell very enjoyable, I really missed not having explicit signatures.
Do functional languages cope well with complexity?
Some do. I've found ML modules and module types (both the Standard ML and Objective Caml) flavors invaluable tools for managing complexity, understanding complexity, and placing unbreachable firewalls between different parts of large programs. I have had less good experiences with Haskell
Final note: these aren't really new issues. Decomposing systems into modules with separate interfaces checked by the compiler has been an issue in Ada, C, C++, CLU, Modula-3, and I'm sure many other languages. The main benefit of a system like Standard ML or Caml is the that you get explicit signatures and modular type checking (something that the C++ community is currently struggling with around templates and concepts). I suspect that these issues are timeless and are going to be important for any large system, no matter the language of implementation.