Using the method presented here: http://cslibrary.stanford.edu/110/BinaryTrees.html#java
12. countTrees() Solution (Java) /** For the key values 1...numKeys, how many structurally unique binary search trees are possible that store those keys? Strategy: consider that each value could be the root. Recursively find the size of the left and right subtrees. */ public static int countTrees(int numKeys) { if (numKeys <=1) { return(1); } else { // there will be one value at the root, with whatever remains // on the left and right each forming their own subtrees. // Iterate through all the values that could be the root... int sum = 0; int left, right, root; for (root=1; root<=numKeys; root++) { left = countTrees(root-1); right = countTrees(numKeys - root); // number of possible trees with this root == left*right sum += left*right; } return(sum); } }
I have a sense that it might be n(n-1)(n-2)...1, i.e. n!
If using a memoizer, is the complexity O(n)?