I'm afraid all the answers you've had so far are quite wrong! It seems I can't reply to them, but do ask if you need more information on why they are wrong. Here is the correct answer:
About 80 bits.
You need a few bits for the "nonce" (sometimes called the IV). When you encrypt, you combine key, plaintext and nonce to produce the ciphertext, and you must never use the same nonce twice. So how big the nonce needs to be depends on how often you plan on using the same key; if you won't be using the key more than 256 times, you can use an 8 bit nonce. Note that it's only the encrypting side that needs to ensure it doesn't use a nonce twice; the decrypting side only needs to care if it cares about preventing replay attacks.
You need 8 bits for the payload, since that's how many bits of plaintext you have.
Finally, you need about 64 bits for the authentication tag. At this length, an attacker has to try on average 2^63 bogus messages minimum before they get one accepted by the remote end. Do not think that you can do without the authentication tag; this is essential for the security of the whole mode.
Put these together using AES in a chaining mode such as EAX or GCM, and you get 80 bits of ciphertext.
The key size isn't a consideration.