views:

176

answers:

2
PA6 : ∀{m n} -> m ≡ n -> n ≡ m

is the axiom I am trying to solve and support, I've tried using a cong (from the core library) but am having troubles with the cong constructor

PA6 = cong

gets me nowhere, I know for cong I am required to supply a refl for equality and a type, but I'm, not sure what type I'm supposed to supply. Ideas?

This is for a small assignment at University, so I'd rather someone demonstrate what I've missed rather than write the acutual answer, but I'd appreciate any degree of support.

+1  A: 

By the nature of the system that I had created, I had to realise I had two equivalences and thus needed to use the equivalence method refl

Thus to satisfy my type signature agda accepted: PA6 refl = refl

hope that helps

Schroedinger
Please post a bit more about the solution so it can help others who have a similar problem (at least your definition of ℕ and _≡_, or the lib version and module name if they are from a library). Upvote will follow :)
fishlips