Are you using an RTOS? Generally this type of thing would be handled by having a high priority thread that gets signaled to do some work by the interrupt.
If you're not using an RTOS, you only have a few tasks, and the work being kicked off by the interrupt isn't too resource intensive, it might be simplest having your high priority work done in the context of the interrupt handler. If those conditions don't hold, then implementing what you're talking about would be the start of a basic multitasking OS itself. That can be an interesting project in its own right, but if you're looking to just get work done, you might want to consider a simple RTOS.
Since you mentioned some specifics about the work you're doing, here's an overview of how I've handled a similar problem in the past:
For handling received data over a UART one method that I've used when dealing with a simpler system that doesn't have full support for tasking (ie., the tasks are round-robined i na simple while
loop) is to have a shared queue for data that's received from the UART. When a UART interrupt fires, the data is read from the UART's RDR (Receive Data Register) and placed in the queue. The trick to deal with this in such a way that the queue pointers aren't corrupted is to carefully make the queue pointers volatile, and make certain that only the interrupt handler modifies the tail pointer and that only the 'foreground' task that's reading data off the queue modified the head pointer. A high-level overview:
Make sure that queue.head
and queue.tail
are volatile
(or write these bits in assembly) to make sure there are no sequencing issues.
Now just make sure that your UART received data queue is large enough that it'll hold all the bytes that could be received before the foreground task gets a chance to run. The foreground task needs to pull the data off the queue into it's own buffers to build up the messages to give to the 'message processor' task.