views:

111

answers:

1

Hello everyone. I was wondering if anyone could tell me how to represent the enumeration of vectors of privite key f in a Meet-In-the-Middle Attack on an NTRU Private key. I can not understand the example, given here http://securityinnovation.com/cryptolab/pdf/NTRUTech004v2.pdf I'll be very thankful if anyone could show an example in detail.

+2  A: 

Hi Elena,

(Full disclosure: I work for Security Innovation and worked for NTRU until SI acquired us)

Warning: Long answer!

Let's look at a toy example: N = 11, q = 29. Let's take df = 3, so f consists of 3 coefficients equal to 1 and 8 coefficients equal to 0. Take dg = 5. And assume that h = g*f^{-1} mod p, rather than using the optimizations that have f = 1+pF. Then we might have

f = [1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0]
finv = [16, 12, 4, 18, 17, 14, 9, 28, 8, 26, 3]
g = [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0]
h = [15, 20, 1, 21, 4, 26, 14, 17, 25, 11, 12]

You can check that f*h = g here.

The attacker wants to find f, so they can do the brute force search for df = 3. They can speed this up by taking advantage of the fact that there will be some rotation of f that has a 1 in the first position, so they only need to search the (10 pick 2) possible locations for the other two nonzero coefficients of f. The full search they perform is this:

           f*h (=g)                                       f
[9, 18, 7, 13, 26, 22, 15, 28, 27, 24, 19]; [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]
[23, 17, 4, 8, 16, 2, 3, 6, 10, 21, 11]; [1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0]
[15, 2, 3, 5, 11, 21, 12, 23, 17, 4, 8]; [1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0]
[12, 23, 17, 4, 8, 16, 2, 3, 5, 11, 20]; [1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]
[24, 20, 9, 18, 7, 13, 26, 22, 14, 28, 27]; [1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0]
[2, 3, 6, 10, 21, 12, 23, 17, 4, 8, 15]; [1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0]
[19, 10, 18, 7, 13, 26, 22, 14, 28, 27, 24]; [1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0]
[28, 27, 25, 19, 10, 18, 7, 13, 25, 22, 14]; [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0]
[18, 7, 13, 26, 22, 15, 28, 27, 24, 19, 9]; [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1]
[22, 14, 28, 27, 25, 19, 10, 18, 7, 13, 25]; [1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0]
[14, 28, 27, 24, 20, 9, 19, 6, 14, 25, 22]; [1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0]
[11, 20, 12, 23, 17, 4, 9, 15, 2, 3, 5]; [1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0]
[23, 17, 4, 8, 16, 1, 4, 5, 11, 20, 12]; [1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0]
[1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0]; [1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0]
[18, 7, 13, 26, 22, 14, 0, 26, 25, 19, 9]; [1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0]
[27, 24, 20, 9, 19, 6, 14, 25, 22, 14, 28]; [1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0]
[17, 4, 8, 16, 2, 3, 6, 10, 21, 11, 23]; [1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1]
[28, 27, 24, 19, 10, 18, 7, 13, 26, 22, 14]; [1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0]
[25, 19, 9, 18, 7, 13, 26, 22, 14, 0, 26]; [1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0]
[8, 16, 1, 3, 6, 10, 21, 12, 23, 17, 4]; [1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0]
[15, 28, 27, 24, 20, 9, 18, 7, 13, 26, 21]; [1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0]
[3, 6, 10, 21, 12, 23, 17, 4, 8, 16, 1]; [1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0]
[12, 23, 17, 4, 9, 15, 2, 3, 5, 11, 20]; [1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0]
[2, 3, 5, 11, 21, 12, 23, 17, 4, 8, 15]; [1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1]
[17, 4, 8, 15, 2, 3, 6, 10, 21, 12, 23]; [1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0]
[0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1]; [1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0]
[7, 13, 26, 21, 15, 28, 27, 24, 20, 9, 18]; [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0]
[24, 20, 9, 18, 7, 13, 26, 21, 15, 28, 27]; [1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0]
[4, 8, 16, 1, 4, 5, 11, 20, 12, 23, 17]; [1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0]
[23, 17, 4, 8, 16, 2, 3, 5, 11, 20, 12]; [1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1]
[26, 22, 14, 28, 27, 24, 20, 9, 18, 7, 13]; [1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0]
[4, 5, 11, 20, 12, 23, 17, 4, 8, 16, 1]; [1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0]
[21, 12, 23, 17, 4, 8, 16, 1, 3, 6, 10]; [1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0]
[1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0]; [1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0]
[20, 9, 18, 7, 13, 26, 22, 14, 28, 27, 24]; [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]
[16, 2, 3, 5, 11, 20, 12, 23, 17, 4, 8]; [1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0]
[4, 9, 15, 2, 3, 5, 11, 20, 12, 23, 17]; [1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0]
[13, 26, 22, 14, 0, 26, 25, 19, 9, 18, 7]; [1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0]
[3, 6, 10, 21, 12, 23, 17, 4, 8, 15, 2]; [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1]
[11, 21, 12, 23, 17, 4, 8, 15, 2, 3, 5]; [1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0]
[20, 9, 19, 6, 14, 25, 22, 14, 28, 27, 24]; [1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0]
[10, 18, 7, 13, 26, 22, 14, 28, 27, 24, 19]; [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1]
[8, 16, 2, 3, 6, 10, 21, 11, 23, 17, 4]; [1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0]
[27, 25, 19, 10, 18, 7, 13, 25, 22, 14, 28]; [1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1]
[7, 13, 26, 22, 15, 28, 27, 24, 19, 9, 18]; [1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1]

Scan down there, and you can see that g appears in row 14, 26 and 34 of the 45 rows. (g appears three times because there are three 1's in f, so there are three rotations of f that have a 1 in the leading position).

Now let's look at the meet-in-the-middle attack. The attacker uses the formula

(f1+f2) * h = g

so

f1*h = g - f2*h

Using e[i] to mean the i'th coefficient of e, this means that the attacker knows that

(f1*h)[i] = - (f2*h)[i] + 0 or 1

So the attacker calculates all possible values of f1*h. Call the resulting list {g1}. They then calculate -f2*h and for each result g2, they see if g2 is the same as an existing g1 or if g2 differs from any g1 by no more than 1 in each coefficient. In other words,

[3, 10, 12, 7]

would match

[4, 10, 12, 8]

Doing it this way, the attacker needs only work through the following:

  • All 10 f1s with a 1 in the leading position and a 1 somewhere else
  • All 10 f2s with a single 1 in any position other than the leading one

This gives the following. I've sorted the lists to make the matches easier to spot.

          f1*h = g1                                           f1
[00, 08, 26, 03, 16, 12, 05, 18, 17, 15, 09]     [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
[03, 16, 12, 04, 19, 17, 15, 09, 00, 08, 26]     [1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
[06, 21, 22, 25, 01, 11, 02, 13, 07, 23, 27]     [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
[07, 24, 27, 06, 21, 22, 25, 00, 11, 02, 13]     [1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
[11, 02, 13, 07, 24, 27, 06, 21, 22, 25, 00]     [1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
[12, 05, 18, 17, 15, 09, 00, 08, 26, 03, 16]     [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
[16, 12, 05, 18, 18, 14, 10, 28, 08, 26, 03]     [1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
[19, 17, 15, 09, 00, 08, 26, 03, 16, 12, 04]     [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
[26, 03, 16, 12, 05, 18, 18, 14, 10, 28, 08]     [1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
[27, 06, 21, 22, 25, 01, 11, 02, 13, 07, 23]     [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

         -f2*h = g2                                          f2
[03, 15, 12, 04, 18, 17, 14, 09, 28, 08, 25]     [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
[04, 18, 17, 14, 09, 28, 08, 25, 03, 15, 12]     [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
[08, 25, 03, 15, 12, 04, 18, 17, 14, 09, 28]     [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
[09, 28, 08, 25, 03, 15, 12, 04, 18, 17, 14]     [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
[12, 04, 18, 17, 14, 09, 28, 08, 25, 03, 15]     [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
[15, 12, 04, 18, 17, 14, 09, 28, 08, 25, 03]     [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
[17, 14, 09, 28, 08, 25, 03, 15, 12, 04, 18]     [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[18, 17, 14, 09, 28, 08, 25, 03, 15, 12, 04]     [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
[25, 03, 15, 12, 04, 18, 17, 14, 09, 28, 08]     [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
[28, 08, 25, 03, 15, 12, 04, 18, 17, 14, 09]     [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]

You can see that:

  • line 1 of g1 matches with line 10 of g2, giving [1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0]
  • line 2 of g1 matches with line 1 of g2, giving [1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0]
  • line 6 of g1 matches with line 5 of g2, giving [1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0]
  • line 7 of g1 matches with line 6 of g2, giving [1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0]
  • line 8 of g1 matches with line 8 of g2, giving [1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0]
  • line 9 of g1 matches with line 9 of g2, giving [1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0]

There are 6 collisions here because there are 3 rotations with a 1 in the leading position and for each rotation there are two ways to pick the other two coefficients.

So an attacker would have to do about 45/3 = 15 work to find the key with a brute force search and about 10 work to find the key with a meet-in-the-middle attack (slightly less than 10 due to the rotations, but I don't have a clean formula to hand).

There are various optimizations, but this should be enough to give you the idea.

One thing I haven't dealt with so far is how to keep the search time down. A straightforward way to do it is simply to sort the results as you're going along. The time to insert or look for a collision with an entry is about log_2(size of the search space). Alternatively, at the cost of using more memory, it's possible to bring this search time down to a constant by reserving a block for each possible value of the first few coefficients of g1.

Hope this helps. Let me know if you have any more questions.

William Whyte
thank you very much for clear example!
Elena Kirshanova