I need to calculate Tanh-1 in C#
(and Sinh-1 and Cosh-1)
I did not found it in Math library.. Any suggestions ?
EDIT: Tanh not Tan !!
I need to calculate Tanh-1 in C#
(and Sinh-1 and Cosh-1)
I did not found it in Math library.. Any suggestions ?
EDIT: Tanh not Tan !!
You need to define them yourself.
http://en.wikipedia.org/wiki/Hyperbolic_function#Inverse_functions_as_logarithms
-1 1 1 + x
tanh x = — ln —————
2 1 - x
-1 _______
sinh x = ln ( x + √ x² + 1 )
-1 _______
cosh x = ln ( x + √ x² - 1 )
You need to derive them yourself using existing functions e.g. Math.sin
You might find this useful:
Secant Sec(X) = 1 / Cos(X)
Cosecant Cosec(X) = 1 / Sin(X)
Cotangent Cotan(X) = 1 / Tan(X)
Inverse Sine Arcsin(X) = Atn(X / Sqr(-X * X + 1))
Inverse Cosine Arccos(X) = Atn(-X / Sqr(-X * X + 1)) + 2 * Atn(1)
Inverse Secant Arcsec(X) = 2 * Atn(1) – Atn(Sgn(X) / Sqr(X * X – 1))
Inverse Cosecant Arccosec(X) = Atn(Sgn(X) / Sqr(X * X – 1))
Inverse Cotangent Arccotan(X) = 2 * Atn(1) - Atn(X)
Hyperbolic Sine HSin(X) = (Exp(X) – Exp(-X)) / 2
Hyperbolic Cosine HCos(X) = (Exp(X) + Exp(-X)) / 2
Hyperbolic Tangent HTan(X) = (Exp(X) – Exp(-X)) / (Exp(X) + Exp(-X))
Hyperbolic Secant HSec(X) = 2 / (Exp(X) + Exp(-X))
Hyperbolic Cosecant HCosec(X) = 2 / (Exp(X) – Exp(-X))
Hyperbolic Cotangent HCotan(X) = (Exp(X) + Exp(-X)) / (Exp(X) – Exp(-X))
Inverse Hyperbolic Sine HArcsin(X) = Log(X + Sqr(X * X + 1))
Inverse Hyperbolic Cosine HArccos(X) = Log(X + Sqr(X * X – 1))
Inverse Hyperbolic Tangent HArctan(X) = Log((1 + X) / (1 – X)) / 2
Inverse Hyperbolic Secant HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X)
Inverse Hyperbolic Cosecant HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) + 1) / X)
Inverse Hyperbolic Cotangent HArccotan(X) = Log((X + 1) / (X – 1)) / 2
Logarithm to base N LogN(X) = Log(X) / Log(N)