I've found my own solution. The following code determines the best rectangle (matching the ratio) to fit the text. It uses divide and conquer to find the closest rectangle (by decrementing the width by some "step"). This algorithm uses a min-width that is always met and I'm sure this could be modified to include a max width. Thoughts?
private Size GetPreferredSize(String text, Font font, StringFormat format)
{
Graphics graphics = this.CreateGraphics();
if (format == null)
{
format = new StringFormat();
}
SizeF textSize = SizeF.Empty;
// The minimum width allowed for the rectangle.
double minWidth = 100;
// The ratio for the height compared to the width.
double heightRatio = 0.61803399; // Gloden ratio to make it look pretty :)
// The amount to in/decrement for width.
double step = 100;
// The new width to be set.
double newWidth = minWidth;
// Find the largest width that the text fits into.
while (true)
{
textSize = graphics.MeasureString(text, font, (int)Math.Round(newWidth), format);
if (textSize.Height <= newWidth * heightRatio)
{
break;
}
newWidth += step;
}
step /= 2;
// Continuously divide the step to adjust the rectangle.
while (true)
{
// Ensure step.
if (step < 1)
{
break;
}
// Ensure minimum width.
if (newWidth - step < minWidth)
{
break;
}
// Try to subract the step from the width.
while (true)
{
// Measure the text.
textSize = graphics.MeasureString(text, font, (int)Math.Round(newWidth - step), format);
// If the text height is going to be less than the new height, decrease the new width.
// Otherwise, break to the next lowest step.
if (textSize.Height < (newWidth - step) * heightRatio)
{
newWidth -= step;
}
else
{
break;
}
}
step /= 2;
}
double width = newWidth;
double height = width * heightRatio;
return new Size((int)Math.Ceiling(width), (int)Math.Ceiling(height));
}