To start with, I think you have your latitude and longitude reversed. Longitude measures X, and latitude measures Y.
The latitude is easy to turn into a north-south distance. We know that 360 degrees is a full circle around the earth through the poles, and that distance is 40008000 meters. As long as you don't need to account for the errors due to the earth being not perfectly spherical, the formula is deltaLatitude * 40008000 / 360
.
The tricky part is converting longitude to X, as you suspected. Since it depends on the latitude you need to decide which latitude you're going to use - you could choose the latitude of your origin, the latitude of your destination, or some arbitrary point in between. The circumference at the equator (latitude 0) is 40075160 meters. The circumference of a circle at a given latitude will be proportional to the cosine, so the formula will be deltaLongitude * 40075160 * cos(latitude) / 360
.
Edit: Your comment indicates you had some trouble with the longitude formula; you might have used degrees instead of radians in the call to cos
, that's a common rookie mistake. To make sure there's no ambiguity, here's working code in Python.
def asRadians(degrees):
return degrees * pi / 180
def getXYpos(relativeNullPoint, p):
""" Calculates X and Y distances in meters.
"""
deltaLatitude = p.latitude - relativeNullPoint.latitude
deltaLongitude = p.longitude - relativeNullPoint.longitude
latitudeCircumference = 40075160 * cos(asRadians(relativeNullPoint.latitude))
resultX = deltaLongitude * latitudeCircumference / 360
resultY = deltaLatitude * 40008000 / 360
return resultX, resultY
I chose to use the relativeNullPoint latitude for the X calculation. This has the benefit that if you convert multiple points with the same longitude, they'll have the same X; north-south lines will be vertical.