2 regions having border means that within a certain small area there should be 3 colors present: red, black and green.
So a very ineffective solution presents itself:
using Color pixelColor = myBitmap.GetPixel(x, y);
you could scan an area for those 3 colors. The area must be larger than the width of the border of course.
There is of course plenty room for optimizations (like going in 50 pixels steps and decreasing the precision continually).
Since black is the least used color, you would search around black areas first.
This should explain what I have written in various comments in this topic:
namespace Phobos.Graphics
{
public class BorderDetector
{
private Color region1Color = Color.FromArgb(222, 22, 46);
private Color region2Color = Color.FromArgb(11, 189, 63);
private Color borderColor = Color.FromArgb(11, 189, 63);
private List<Point> region1Points = new List<Point>();
private List<Point> region2Points = new List<Point>();
private List<Point> borderPoints = new List<Point>();
private Bitmap b;
private const int precision = 10;
private const int distanceTreshold = 25;
public long Miliseconds1 { get; set; }
public long Miliseconds2 { get; set; }
public BorderDetector(Bitmap b)
{
if (b == null) throw new ArgumentNullException("b");
this.b = b;
}
private void ScanBitmap()
{
Color c;
for (int x = precision; x < this.b.Width; x += BorderDetector.precision)
{
for (int y = precision; y < this.b.Height; y += BorderDetector.precision)
{
c = this.b.GetPixel(x, y);
if (c == region1Color) region1Points.Add(new Point(x, y));
else if (c == region2Color) region2Points.Add(new Point(x, y));
else if (c == borderColor) borderPoints.Add(new Point(x, y));
}
}
}
/// <summary>Returns a distance of two points (inaccurate but very fast).</summary>
private int GetDistance(Point p1, Point p2)
{
return Math.Abs(p1.X - p2.X) + Math.Abs(p1.Y - p2.Y);
}
/// <summary>Finds the closests 2 points among the points in the 2 sets.</summary>
private int FindClosestPoints(List<Point> r1Points, List<Point> r2Points, out Point foundR1, out Point foundR2)
{
int minDistance = Int32.MaxValue;
int distance = 0;
foundR1 = Point.Empty;
foundR2 = Point.Empty;
foreach (Point r1 in r1Points)
foreach (Point r2 in r2Points)
{
distance = this.GetDistance(r1, r2);
if (distance < minDistance)
{
foundR1 = r1;
foundR2 = r2;
minDistance = distance;
}
}
return minDistance;
}
public bool FindBorder()
{
Point r1;
Point r2;
Stopwatch watch = new Stopwatch();
watch.Start();
this.ScanBitmap();
watch.Stop();
this.Miliseconds1 = watch.ElapsedMilliseconds;
watch.Start();
int distance = this.FindClosestPoints(this.region1Points, this.region2Points, out r1, out r2);
watch.Stop();
this.Miliseconds2 = watch.ElapsedMilliseconds;
this.b.SetPixel(r1.X, r1.Y, Color.Green);
this.b.SetPixel(r2.X, r2.Y, Color.Red);
return (distance <= BorderDetector.distanceTreshold);
}
}
}
It is very simple. Searching this way only takes about 2 + 4 ms (scanning and finding the closest points).
You could also do the search recursively: first with precision = 1000, then precision = 100 and finally precision = 10 for large images.
FindClosestPoints will practically give you an estimated rectangual area where the border should be situated (usually borders are like that).
Then you could use the vector approach I have described in other comments.