If you have a quadratic equation then the maximum or minimum will always be at the point when the differential of the equation is 0. If your quadratic equation has a formula of ax^2 + bx + c = 0 then this point will be when x = -b/2a.
Whether it is a maximum opr minimum can be determined by looking at a. If a > 0 then its a minimum and if a < 0 then its a maximum (if a = 0 then its not a quadratic).
I hope that helps. If you haven't got the equation of the curve in this sort of form could you say what you have got to work from?
Edit: question has changed so that the curve is a section of a sine curve and not a quadratic any more. This answer is therefore no longer appropriate.
Edit2:
With a sine curve the general equation will be y = a sin(mx+t) + c. You will never be able to exactly determine the original equation because for any solution there will be a higher frequency solution that also matches. I'm unsure currently how many points are needed to precisely calculate what a would be (which would give the min and max of the curve).