Implementation of the MS Excel RATE() function using the secant method (a finite difference approximation of Newton's method) taken from PHPExcel:
define('FINANCIAL_MAX_ITERATIONS', 128);
define('FINANCIAL_PRECISION', 1.0e-08);
function RATE($nper, $pmt, $pv, $fv = 0.0, $type = 0, $guess = 0.1) {
$rate = $guess;
if (abs($rate) < FINANCIAL_PRECISION) {
$y = $pv * (1 + $nper * $rate) + $pmt * (1 + $rate * $type) * $nper + $fv;
} else {
$f = exp($nper * log(1 + $rate));
$y = $pv * $f + $pmt * (1 / $rate + $type) * ($f - 1) + $fv;
}
$y0 = $pv + $pmt * $nper + $fv;
$y1 = $pv * $f + $pmt * (1 / $rate + $type) * ($f - 1) + $fv;
// find root by secant method
$i = $x0 = 0.0;
$x1 = $rate;
while ((abs($y0 - $y1) > FINANCIAL_PRECISION) && ($i < FINANCIAL_MAX_ITERATIONS)) {
$rate = ($y1 * $x0 - $y0 * $x1) / ($y1 - $y0);
$x0 = $x1;
$x1 = $rate;
if (abs($rate) < FINANCIAL_PRECISION) {
$y = $pv * (1 + $nper * $rate) + $pmt * (1 + $rate * $type) * $nper + $fv;
} else {
$f = exp($nper * log(1 + $rate));
$y = $pv * $f + $pmt * (1 / $rate + $type) * ($f - 1) + $fv;
}
$y0 = $y1;
$y1 = $y;
++$i;
}
return $rate;
} // function RATE()